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1. INTRODUCTION 

1.1. Preamble 

In many practical engineering electromagnetic problems, exact 

analytical solutions do not exist. Fortunately, the capabilities of 

modern computers make it possible for engineers to seek alternatives. 

Among the most preferred of these alternatives are the methods of 

Rayleigh-Ritz, finite difference, finite elements, and the method of 

moments. These techniques as mathematical disciplines are discussed 

in various textbooks such as [28,31,35,53]. 

The method of moments, Rayleigh-Ritz, and finite element techniques 

are based on the stationary property of a variational integral [28,35,53]. 

(These techniques reduce the problem of finding a minimizing (or maxi­

mizing) function for the variational integral to a set of simultaneous 

linear algebraic equations.) It is true that finite element techniques 

can be applied directly to the method of weighted residuals [31] rather 

than a stationary varitional functional. However, a quick review of 

IEEE Transactions on Microwave Theory and Techniques over the past 

three decades seems to indicate a dominant role of variational functionals 

over the concept of weighted residuals as a fundamental tool on which 

the finite element and the Rayleigh-Ritz methods are based. Furthermore, 

this observation seems to be supported by the frequent appearance in 

recent years of publications in the same journal dealing with the 

variational formulation of Maxwell's equations. 
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The above discussion points to the fact that the variational 

principle plays a crucial role in the numerical analysis of electromag­

netic problems. These facts together with some curiosity motivated the 

author to pursue the basic aspects of variational principle with applica­

tion to electromagnetics in mind. Indeed, the main content of this 

thesis will be devoted to the topic of formulating Maxwell's equations 

as two functionals, called complementary variational integrals. 

The complementary variational principles, as they are usually 

referred, are general methods of formulating a given boundary value 

problem as two variational integrals. The theory is based on some 

abstract concepts in linear vector space. As such, it was felt necessary 

to devote a good portion of the thesis to clarifying the fundamental 

concepts and theorems. In the following, a brief explanation of each 

chapter is attempted. 

The two sections immediately following the present section discuss 

the application of variational methods in electromagnetics. Section 1.2 

reviews some literature beginning with 1969. It was felt that Wexler's 

article [52] in that year marked the end of scalar variational formulation. 

Shortly after, a more powerful vector variational formulation started 

to get attention. The presently popular finite element technique is 

capable of reducing the latter formulation into a discrete algebraic 

problem. 

Section 1.3 gives brief overview of complementary variational 

principles as applied to electromagnetics. The last section defines 

the problem pursued in this thesis. 
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The discussion of variational principles begins with Chapter 2. 

Although not essential for our purpose, some basic aspects of the 

classical theory are illustrated in this chapter. It is hoped that 

familiarity with conventional variational theory will shed some light 

on the complementary variational principles discussed in the succeeding 

chapters. 

Most of Chapter 3 is devoted to the preliminary basic concepts 

necessary for the development of complementary variational theory. 

Operators and scalar products are discussed as part of the structure 

of Hilbert space. Complementary extremum principles in their most 

general form are presented as Theorem 3.5.1 at the conclusion of the 

chapter. 

Chapter 4 covers the general topics of formulating a given boundary 

value problem as two complementary variational integrals. Section 4.7 

points out some important aspects of the theory that could be overlooked 

by the reader. 

In Chapter 5 difficulties are pointed out when one tries to apply 

complementary extremum principles directly to Maxwell's 

equations. It is clear from discussions in this chapter that there 

is a need for modification if the theory is going to be useful in 

electromagnetics. 

Chapter 6 is devoted to the power series approach to electromag-

netism. The importance of this approach to the engineering electromag­

netics is stressed. 
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Finally, in Chapter 7 it is shown that the complementary extremum 

principles can be applied to the kth-order field laws in the power 

series. The following chapter illustrates the theory through a simple 

example of parallel plate capacitor analysis. 

1.2. Conventional Variational Principles in Electromagnetics 

The word "conventional" or "classical" as opposed to "complementary" 

will be used throughout the thesis. It refers to the variational theory 

that yields only the one-sided bound to the stationary value of the 

functional. The complementary variational theory is capable of yielding 

upper and lower bounds. With this point clarified, we are ready to 

begin the discourse into the main content of this section. 

As pointed out by A. D. Berk, the often quoted paper [19] seems 

to be the first vector variational technique in engineering electro­

magnetics. He formulates variational expressions in terms of vector 

fields Ë and H. His formulation enabled engineers to apply variational 

techniques to inhomogeneous as well as anisotropic regions [29]. However, 

as evident from the following paragraph, Berk's point of view did not 

become popular until 1971 when W. J. English [23] published a paper 

on vector variational formulation of inhomogeneously loaded waveguide 

structures. 

In 1969, Wexler [52] discussed popular numerical techniques in 

engineering electromagnetics. According to the author, the standard 

procedure was to formulate the given boundary value problem as a scalar 
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variational functional. (The term "scalar" is used here because the 

variational functional is minimized with respect to a scalar function 

rather than a vector field. A functional is a function of a function 

assigning unique numerical value to each given function. The discussion 

of the general topic of reformulating boundary value problems as vari­

ational functionals can be found in various textbooks such as [13,32,35].) 

A trial function is then inserted into the functional. By following the 

standard Ritz procedure, the functional is minimized with respect to co­

efficient parameters in the trial function. This reduces the boundary 

value problem to a set of linear algebraic equations, the solutions of 

which determine the coefficient parameters in the trial function. The 

trial function, with its coefficient parameters determined, constitute 

the approximate solution to the original boundary value problem. Examples 

of applications of this technique in electromagnetics abound in literature 

[44,45,48]. 

Unfortunately, as pointed out by English and Young [24], Wexler 

[52], and Konrad [30], the scalar variational formulation has a serious 

limitation. It is useful only when the geometries are such that fields 

can be derived from a single scalar potential. This prompted Wexler 

[52] to emphasize the need for a vector variational formulation in which 

a functional should be minimized with respect to electric and/or magnetic 

fields. The first successful application of a numerical tecnhnique 

using all six components of E and H fields to a vector variational 

formulation of Maxwell's equations appeared in English's paper [23] 

in 1971. In his paper, the author formulated a cylindrical waveguide 



www.manaraa.com

6 

problem as a vector variational integral in terms of vectors of E and 

H fields. He then uses six trial functions, one for each component 

of E and H, and determines the coefficients in the trial functions 

by minimizing the functional by Ritz procedure. His results on field 

distributions, propagation constants, and cutoff frequencies agree 

very well with the exact values. 

The above six-component vector variational formulation was succeeded 

by three-component vector variational formulations [6,21,24,30]. The 

latter formulation is desirable mainly because of its reduced matrix 

size as compared to the six-component formulation [24]. In his 1976 

paper [30], Konrad points out the advantage of his three-component 

formulation. Unlike previous three-component formulations, Konrad's 

vector variational integral can be applied to anisotropic media and 

does not require the trial fields to satisfy boundary conditions. 

There are other investigators whose main interests seem to lie 

in Hamilton's principle. In classical dynamics, Hamilton's principle 

is well established and can be stated as follows [34]: 

Hamilton's Principle: Of all the possible paths along 

which a dynamical system may move from one point to another 

within a specified time interval, the actual path followed 

is that which minimizes the time integral of the difference 

between the kinetic and potential energies. 
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Of course, this theory cannot give results different than those obtained 

using Newton's law. Hamilton's principle is just another statement 

of Newtonian dynamics which happens to be more advantageous than Newton's 

formulation in certain problems. 

Hamilton's principle changes the Newton's law to a variational 

problem of finding coordinate functions that minimizes the functional 

t2 

(T-U)dt (1.2.1) 

'l 

where T,U are the kinetic and potential energies respectively. Although 

not very well-established, such a principle is valid in electromag­

netics [21]. The papers [20], [21], [36],[37] discuss Hamilton's 

principle in electromagnetics in various contexts. They derive vector 

variational integrals from Hamilton's principle and show their advantages 

and usefulness in engineering electromagnetics. 

1.3. Complementary Variational Principles in Electromagnetics 

In 1964, Rail [42] published a paper in which he formulates a 

simple boundary value problem as two variational integrals. These two 

integrals (or functionals) are commonly referred to as the complementary 

variational formulation of a given boundary value problem. Since Rail's 

first paper, the theory has been extended to cover many boundary value 

problems in mathematical physics [16,18,41,43]. 
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In electromagnetics, the first application of the theory appeared in 

1969 [17]. The authors formulate static Maxwell's equations as comple­

mentary variational integrals. They also suggested how the integrals can 

be used to estimate capacitance of a given structure. Since this first 

publication, there have been numerous papers [3-5,7-9,11] demonstrating 

the usefulness of this relatively new variational theory in dealing 

with some limited classes of electromagnetic problems. 

In recent years, N. Anderson and A. M. Arthurs have published 

three papers [2,6,10] in succession. Their point of view is closely 

related to Hamilton's principle. They regard two curl equations of 

electromagnetic fields as canonical equations in Hamilton's formulation. 

By working backwards, they derive a variational integral in terms of 

electric and magnetic fields. Furthermore, they derive two functionals, 

in terms of E or H alone, from the original functional. They call their 

theory complementary variational principles because the two functionals 

are derived from the original one in a complementary fashion. However, 

it must be stressed that their complementary integrals do not give 

complementary bounds as implied in [6]. In other words, complementary 

"stationary" principles are valid but the complementary "extremum" 

principles fail. 

1.4. Statement of Problem 

In the previous section, we cited the first paper in which authors 

formulated the basic Maxwell's equations of static fields as two comple­
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mentary variational integrals. Unlike their recent papers mentioned 

above, the authors prove that the two integrals approach the stationary 

value from opposite directions. In other words, the complementary 

"extremum" principle is valid in their static formulation. 

It is true that the complementary variational formulation of static 

Maxwell's equations, mentioned above, can be useful in certain time-

harmonic problems such as [3]. However, it must be mentioned that 

in order for the theory to apply, additional terms in the time-harmonic 

equation arising from the time variation must be neglected. Therefore, 

the two complementary variational integrals are good only to the static 

approximation. But, as it often happens in engineering electromagnetic 

problems, such seemingly crude approximations can be very useful. 

We are now ready to state the problem studied in this thesis. 

Problem Definition : To investigate the usefulness of the 

complementary extremum principles in time-varying electromagnetic 

field problems. Specifically, we seek a mathematical device or 

a technique through which Maxwell's equations can be formulated 

as two complementary variational integrals. These integrals must 

account for time variation and approach the stationary value from 

both above and below. 

Chapter 7 discusses one way by which sinusoidally-varying fields can 

be formulated as two variational integrals that satisfy the requirements 

in Problem Definition. 
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2. CLASSICAL VARIATIONAL PRINCIPLES 

2.1. Introduction 

In this chapter, some basic concepts of variational theory are 

illustrated through discussion of the simplest problem. We assume the 

"admissible functions" to be at least twice differentiable. Following 

the usual procedure, we substitute the trial function into the integrand. 

This reduces the variational problem into maximum-minimum problem of 

ordinary functions. After applying the stationary condition for ordinary 

functionij that is, the first derivative must vanish, the necessary 

condition of Euler and Lagrange is derived. 

The basic concepts introduced here carry directly into the comple­

mentary variational theory. In complementary variational theory, a given 

boundary value problem is formulated as two different variational 

integrals. However, one needs to follow the conventional analysis 

techniques shown in this chapter in order to arrive at the stationary 

equations of these two integrals. 

2.2. The Fundamental Problem 

Traditionally, the calculus of variation begins with discussion of 

the simplest type of problem. It deals with the problem of finding a 

function or functions that extremize (maximize or minimize) the integral 

of the form 
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L(x,$(x)'(x))dx (2.2.1) 

•The integral I is a function of a function $(x). Two end points of $(x) 

are assumed to be fixed: $(xQ) = a and $(xi) = B. The symbol ^>'(x) 

stands for the derivative of $(x), and the function L(x,$(x),0'(x)) of 

the three variables is assumed to possess continuous derivatives up 

to some order, n, required by the theory. If the integral of Eq. 2.2.1 

has a maximum value for some given function $(x), it can be changed to a 

minimum problem by considering the negative of the integral [13]. 

Therefore, it is sufficient to develop the theory for a minimizing 

problem only [13]. 

The theory depends largely on the type of functions, called "ad­

missible functions," that are allowed to compete for minimization [40]. 

The most restricted class of functions for this fundamental problem 

requires the function to be at least twice continuously differentiable. 

On the other hand, a function can be picked from a much larger class 

where the only requirement is that the function be piecewise continous. 

The theory developed in Section 2.4 is based on the restriction that 

the admissible functions be at least twice continuously differentiable. 

I($(x)) = 
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2.3. Types of Minima of Integrals 

Let us denote the space of twice continuously differentiable 

functions of single variable by the symbol • Before defining minima 

of integrals, it is necessary to introduce the concepts of "distance" 

and "neighborhood" in space 5. The following discussion closely parallels 

that of Leitman [32]. 

Consider two functions, $ (x) ; [ xq  and $ (x) : [xo,xi]->R^, taking 

a closed set [xqjXx] into a real line R^, which are members of 5. The 

distance of order zero between $(x) and 0(x) is 

do[$(x)(x)] = L.U.B.I $(x)-0(x)I (2.3.1) 

X C [ XQ, X ^ ]  

where L.U.B. stands for the least upper bound. Two vertical bars are 

used to denote "absolute value of" and the symbol C signifies that x is 

a member of the closed set [xqjX]^]. The distance of order one between 

$(x )  and $(x) is 

d]^[$(x) ,3(x) ] = L.U.B. I $(x)-ii' (x)l (2.3.2) 

Thus, the functions $(x) and $(x) are "near" each other in the sense 

of zero order distance if their values are close to each other at every 

xQxqjXi]. They are "near" each other in the sense of first order 

distance if, in addition, their slopes are close to each other at every 

X C [xQ,x i ] .  

Now, we are ready to define neighborhoods. Given two functions 

$ (x) ,?> (x)Cn and a positive real number oCR^, a 6-neighborhood of order 

zero of $(x) is 
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No[ô,$(x)] = {î(x) : [xo,xi]->R^ I do[$(x) ,î'(x) ]<6} (2.3.3) 

while a ô-neighborhood of order one of #(x) is 

Ni[ô^(x)]={$'(x) : [xQ jXi]-î-r1| d;^ [$(x) ,$ (x) ] <6 } (2.3.4) 

In both Eqs. 2.3.3 and 2.3.4, the brackets {} read "a set of all" and 

the vertical bar denotes "such that." 

We are now able to define minima of integrals in terms of neighbor­

hood of a function. The arbitrary function <}i(x)Cfl furnishes a strong 

local minimum of the integral of Eq. 2.2.1 if and only if there exists 

5>0, such that 

I((j)(x)) < I($(x)) V$(X) Cf2nNo[ô,(j)(x)] (2.3.5) 

The symbol V denotes "for all," while 0 signifies the intersection 

of two sets. In a similar fashion, the arbitrary function (!)(x)'CO 

furnishes a weak local minimum of the integral (Eq. 2.2.1) if and only 

if there exists 6>0 such that 

l(<l)(x))<l($(x)) V$(x)C SÎ n N]^[6 ,())(x) ] (2.3.6) 

The difference between Eqs. 2.3.5 and 2.3.6 lies in the nature of the 

neighborhood of $(x). In addition to the two types of local minima 

introduced above, we define global minimum in the following way: the 

function (fi(x) furnishes the global minimum of the integral (Eq. 2.2.1) 

if and only if 

l((|)(x))Ç($(x)) V$(x)Cn (2.3.7) 

When the integral of Eq. 2.2.1 is maximum instead of minimum, we 

can speak of maxima defined in an analogous fashion with inequalities 

reversed. However, as pointed out earlier, it suffices to talk about 
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minimum only, since a function <|)(x) that minimizes I($(x)) of Eq. 2.2.1 

also maximizes l(f(x)). 

In the definitions of global, strong local, and weak local minima, 

the function (j)(x) is compared to members of successively smaller sets 

of functions. Thus, we conclude that a global minimum a strong local 

minimum -»• a weak local minimum [32]. In other words, a weak local 

minimum is necessary for a strong local minimum. In turn, a condition 

that is necessary for a strong local minimum is necessary for a global 

minimum. 

Consider a function n(x)Cn with n(xo)=0 and n(x].)=0. It is then 

possible to represent an arbitrary function $(x)Cî2 in the form 

where (j)(x) is some fixed function, e is a constant, and n(x) is adjusted 

to satisfy Eq. 2.4.1 [51]. Geometrically, it represents a curve as 

drawn in Fig. 2.4.1, where $(x) assumes a and g at xq and x^, 

respectively. 

We can consider Eq. 2.4.1 to be a function of a parameter e for 

a given x. This leads to 

2.4. Euler-Lagrange Theory 

$(x)  =  ( ) ) (x )  +  en(x)  (2.4.1) 

lim#(x,e) = lim[(j)(x)+en(x) ] =(t)(x) 

£->•0 e-^0 

(2.4.2) 

lim 3$(xe)/3x = lim[<j) ' (x)+eti ' (x) ] = ({) ' (x) (2.4.3) 

e^O e-^0 
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$(x) 

Figure 2.4.1. An arbitrary function 0(x) 
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showing that function $(x) belongs to the {-neighborhood of order 1 

for (j)(x) for sufficiently small e [40]. 

Now, we can proceed with the following. The integral (Eq. 2.2.1), 

which is a function of a function $(x), can be changed to a function 

1(e) of a single variable e. This is done by substituting the particular 

representation of *(x) (Eq. 2.4.1) into the integrand and performing 

the integration. Also, if the integral yields the minimum when 

$(x) = (j)(xO, then l(e) assumes minimum for e=0. Therefore, unlike 

maximum-minimum problems in ordinary functions, the stationary point, 

e=0, is known in advance [51]. 

Mathematically, the above reasoning translates essentially into 

the following equations 

XI 

1(e) = l(ij)(x)+eTi(x) ) = I L(x ,<l)(x)+£:n(x) ' (x)+en' (x) )dx 

XQ (2.4.4) 

•^7^^= I [ n(x)—-— L(x,(j, (x)+eri(x) jij) ' (x)+£:n ' (x) ) + 
de  J  3 * ( x )  

XQ 

Ti'(x) ^ L(x,(|)(x)-t-en(x) ,<p(x)+en' (x))]dx (2.4.5) 
3(})' (x) 

Now, suppose I($(x)) yields minimum at (j)(x). It then follows that 

dl(e) 

de 
n +  n dx = 0 (2 .4 ,6)  

3(j) 
e=0 J 

X 
0 
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where the new arguments in the integrand are suppressed. Note that 

functions 9L/S(|) and 9L/3<I>' are now evaluated at x, (})(x), and $ ' (x). 

Integrating by parts the second term in Eq. 2.4.6 we obtain 

This is the necessary condition normally referred to as the Euler-Lagrange 

equation. It yields a second order differential equation that can be 

solved for (|)(x) under the boundary conditions (!)(xq)= a and ifi(x%)=6. 

It is worth pointing out that Eq. 2.4.8 under given boundary 

conditions may possess multiple solutions [32]. The solution or 

solutions are usually referred to as "extremal." VJhen the integral 

I(^(x)) is shown to have minimum at 4" (x), the only conclusion we can 

draw from 2.4.8 is that the minimizing function must be one of the 

extremals. 

0 

(2.4.7) 

because Ti(x')=rivX]^)=0. Now we invoke the so called "fundamental 

theorem of calculus of variations" [25,51] to conclude: 

(2.4.8) 
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3. AN EXTENSION OF CLASSICAL VARIATIONAL PRINCIPLES 

3.1. Introduction 

There are various ways the previous Euler-Lagrange theory can 

be extended [14,40,51]. In this chapter, we limit our attention to 

one type of extension [14]. 

The classical variational theory approaches the stationary value 

from one side--either above or below. However, there are certain types 

of variational integrals for which a complementary integral exists. 

The word "complementary" is used here naturally because the integral 

approaches the stationary value from the opposite direction. In the 

following discussions, we will be concerned with this relatively new 

extension. The first unified theory appeared in 1964 and is called 

the complementary extremum principles. But before we can present the 

general result. Theorem 2.5.1, some relevant basic concepts must be 

clarified. 

Most of the concepts and symbols in this chapter closely follow 

the book by A. M. Arthurs, Complementary Variational Principles [14], 

where he gives complete treatment to linear as well as nonlinear problems. 

Only some relevant topics suitable for our purpose are presented in 

the following sections. While doing so, efforts are made to include 

more details than seen in A. M. Arthurs' book. 
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3.2. A Class of Operators in a Vector Space of Functions 

Let O(^) and n(u) denote two vector spaces of functions $ and u, 

respectively. We assume both spaces are complete, linear and real 

vector spaces. Furthermore, let each space possess a scalar product 

denoted by [,] for S2((j)) and (,) for f2(u) with the following properties. 

a) [(f) = a [i|) + 3[<|) ><1)2] > where a and g 

are arbitrary real constants 

b) [*1,*2] ~ [<t'2''f'l] 

c) [(j),(j)] 2 0 with [<i),(l)] = 0 if and only if (|) = 0 

The same properties hold for a scalar product (,) in J2(u) space. In 

mathematical formalism, the vector spaces under consideration are called 

Hilbert spaces. We designate the two Hilbert spaces by H((j)) = , [, ] } 

and H(u) = {S2(u) ,(,)}. 

An operator T is a transformation from one Hilbert space to another 

Qr to itself. An operator T is linear when it satisfies 

T(a(j)+Bi|') ~ aTij) + gTij; (3.2.1) 

One important property of a linear operator that we need in develop­

ment of a complementary variational theory is that it possesses a 

conjugate operator. Given a linear operator T:H(^)->H(u), there is 

a second operator T*:H(u)->-H(<!)) such that 

(ujTij)) = [T*u,<()] + S(u,#) (3.2.2) 

for all ({>,u in the domain of T,T*. The adjoint of T is the operator T* 

which takes an arbitrary function in n(u) into a different space 0($). 

The last term S(u,ct)) is called a conjunct of u and 4) [27]. 
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The complementary variational principle is based on a certain class 

of operators. A. M. Arthurs' [14] shows five different kinds of operators 

belonging to that class. For the sake of illustration, three of them 

are discussed below. First operators are based on integration by parts. 

^ u(x)^^(x)dx = ^ (-^^(x))(j)(x)dx + [u(x)({)(x) (3.2.3) 

If we define two scalar products as 

f b 
(u,v) = \ u(x)v(x)dx (3.2.4) 

J 
[4^^] = <j)(x)(l;(x)dx (3.2.5) 

Eq. 3.2.3 becomes an example of Eq. 3.2.2. Comparing the two equations, 

we can identify 

T = -^ and T* = - (3.2.6) 
dx dx 

and S(u,#) as the boundary term in Eq. 3.2.3. Note the symbolic use 

of the equality sign in Eq. 3.2.6. 

Second operators come from the equation 

V'(u^) = u"V(j) + (V-u)<l) (3.2.7) 

Rearranging Eq. 3.2.7 and integrating both sides of equality, 

we obtain 

^^u-V(fidV = j"y(-V-u)(t)dV + jg^u*n({idB (3.2.8) 

in which integrations are performed over volume V and its boundary 9V. 

By defining two scalar products as 

(u,v) = j u'vdV (3.2.9) 

[([) ,ijj] =j4^dV (3.2.10) 

and comparing Eq. 3.2.8 with Eq.3.2.2, it follows that 

T = grad and T* = -div (3.2.11) 

with the boundary term in Eq. 3.2.8 corresponding to S(u,^). 
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The last example of operators T, T* follows from 

V-ux(j> = (p'Vxu - U'V# (3.2.12) 

which yields 

^u*Vx(j)dV =J^Vxu-ij)dV +jg^u*nx(j)dB (3.2.13) 

The vector n in the last term of Eq. 3.2.13 is an outward normal vector 

to the boundary 3V. In this example, we take as scalar products 

(u,v) = jyU'vdV (3.2.14) 

- ^y<j)"i|;dV (3.2.15) 

Again, by comparison of Eq. 3.2.13 and Eq. 3.2.2, we identify 

T = curl and T* = curl (3.2.16) 

Like the two preceding examples, the boundary term in Eq. 3.2.13 becomes 

S(u,(j)) in Eq. 3.2.2. 

In the first example, o(u) and o(^) are both vector space of functions 

of one variable. In the third example, they are vector space of vector 

fields u and ij). The second example is slightly different in that one is 

a space of vector field while the other is a space of scaler functions 

of three variables. 

All three examples have a common property in their boundary terms 

S(u,ij)). In view of later developments, it is convenient to express 

this common property by the equation 

(u,T<}>) = [T*u,<j)] + (u,a({i)3V (3.2.17) 

where O is a linear operator 0:H(4i)"^H(u) on the boundary with its 

conjugate o*;H(u)->-H((fi ) satisfying the equation 

(u,o$)3V = [a*u,<t)]8V (3.2.18) 



www.manaraa.com

22 

By properly defining a and a*, all three examples can be written as 

Eq. 3.2.17. For the first example, we define 

(u;v)9V = u(a)v(a) + u(b)v(b) 

= <P(a)'P(a) + *(b)^(b) (3.2.19) 

0 = n-i, 0* = n*T 

where i is the unit vector in the positive x direction and n=i at x=bj 

-i at x=a. Similar definitions for the second example are 

(u,v)3V = jgyU'vdB 

**dB (3.2.20) 

00 = n't*, o^'u = n*u 

and, for the third example, 

(u,v)3V = Jg^u-vdB 

(3.2.21) 

# = nx4:, o*u = -nxu 

where in both cases n is the unit vector normal to the surface 3V. 

3.3. Derivatives of Functionals 

Various isolated instances of complementary variational 

principles can be unified under one cohesive theory by exploiting some 

simple ideas of functionals [14]. The most general complementary 

variational theory is given in Section 3.5, but we need some preliminary 

results and definitions. 

Let H( ({))= {f2( (j)) , [, ] } be a Hilbert space of functions 4). A 

functional E(0) is a function of a function (j) written as 
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E((|,):D(E) CH(<j,)-vR (3.3.1) 

The domain D(E) of E($) is contained in the space H($). For each arbitrary 

function 4^D(E), the functional E(^). assigns one real number. If the 

functional can be written in the form 

E(4)+E^) = E(6) + [eÇ,£'(<())] + %[£ Ç ,E"((1) )e Ç ] + 03 (3.3.2) 

where 03/e ̂-^0 as e-K), then we say the functional is twice differentiable. 

The second and third terms are scalar products that contain the derivative 

E'((}>) and the second derivative E"(<t>)) respectively. 

A similar definition is useful for a functional of two functions <!) 

and u. We take two scalar product spaces H(u)={S2(u), (, )} and H(<i)) = 

{0($),[,]} and consider the functional 

K(u,c|)):D(K)CH(u)xH((())->R (3.3.3) 

The derivatives are defined by the equation 

K(u+ev,(i)+€C) = K(u,(ti) + (ev,Ku) + [eÇ.K^] + V.ev.K^^Ev) 

+ i5(Ev,Ku^eÇ) +• JglK^^^ev.eÇ] + i5[£Ç,K^^eÇ] + o^ 

(3.3.4) 

Ky and are partial derivatives with respect to u and (j) in that order. 

The rest of the terms contain second partials. Of course, it is assumed 

that a given functional can be written in the form as Eq. 3.3.4 and 

the third order term becomes 03/e ̂-*-0 as e->0. 

In Eqs. 3.3.2 and 3.3.4, the terms in which e appears only once are 

called first variations, while the second order terms in e are called 

second variations. Using these and the above ideas, the stationary 

property of functional can be stated as follows. 
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Theorem 3.3.1. A functional E($) is stationary at î'=<|) if and 

only if E'(^)=0. 

Theorem 3.3.2. A functional K(U,$) is stationary at U=u and 

$=* if and only if K^=0 and K^=0. 

An intuitive argument for the above theorems can be found in 

Reference 14. Going back to Chapter 2, we see that the Euler-Lagrange 

equation is a necessary consequence of Theorem 3.3.1. By expressing 

the integrand in Eq. 2.2.1 in Taylor series expansion and comparing 

the results with Eq. 3.3.2, the Euler-Lagrange equation can be seen 

to be the derivative of the functional l($(x)). 

3.4. Convexity of Functionals 

We need to clarify one more concept before discussing complementary 

variational theory. First, we define a convex set. We say that a 

set C in a linear space is convex if, given <() and ^ in C, all elements 

of the form X4+(1-XX& with 0<X<1 are in C. Next, we define convexity. 

Definition 3.4.1. A functional F((j)) :(|) CC->-R defined on a convex 

subset C of 0(*) is said to be convex if 

F(#+(1-X),j,) < AF(*) + (l-A)F(^) (3.4.1) 

for all 1)1,in C and all X such that 0<X<1. If strict inequality 

holds in Eq. 3.4.1 for F(*) is said to be strictly convex. 

Also, F(#) is (strictly) concave if -F((f)) is (strictly) convex. 

Figure 3.4.1 illustrates intuitive ideas of convexity. 



www.manaraa.com

25 

XF(0) + (l-X)F(ij)) 

C 

'P 

Figure 3.4.1. Convex functional F 
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When the functional is differentiable, there is an equivalent 

statement that is more convenient for our purpose. 

Lemma 3.4.1. If a functional F(^) is differentiable in C, then 

F((j)) is convex in C if and only if 

F((()]^)-F((J)2)"[<()1"(1)2S^'^ 2.® (3.4.2) 

for all and (j)2 in C. 

The proof is omitted, but a general outline is sketched in 

Reference 14. 

For a differentiable functional, the Lemma 3.4.1 also implies 

F((j)2)-F((j);[)-[(j)2"<i)i )F'(i|)]̂ ) ] 2 0 (3.4.3) 

By adding Eq. 3.4.2 to Eq. 3.4.3, we obtain 

[())1-(|)2jF'(ifii) - F' (412)] 2. (3.4.4) 

If the derivative F'(<j)) is also differentiable, Eq. 3.4.4 can be written 

as 

[(j)l -<p2) F"((|))(4'%-4'2)] 2. ® (3.4.5) 

which implies 

F"(<!))> 0 (3.4.6) 

where <('=<!'1+I(<!>i-<î>2) i 0<n<l. By reversing the process, it is not 

difficult to show that Eq. 3.4.6 also implies Eq. 3.4.2 or, equivalently, 

Eq. 3.4.3. Therefore, we obtain: 

Lemma 3.4.2. A twice differentiable functional in C is convex 

if and only if F"((|))20. 

A similar definition and lemmas for a functional of two functions 

are also useful. We list them below. 
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Definition 3.4.2. A functional F(u,(j)) :f2(u)xfi((())->-R defined on a 

convex subset B of flCu) is convex in u if 

F(XU]^+(1-X)u2j((>) ̂  XF(U]^,(J)) + ( 1-X)F(U2,6) (3.4.7) 

for all u^, U2 in B, ij) in flCij)), and all X such that 0<X<1. 

Lemma 3.4.3. If F(u,(j)) : (u)xî2((|))^R is differentiable with respect 

to u, then F(uj<j)) is convex with respect to u in B if and only if 

FCu^jcj)) - F(u2,(J)) - (U]^-U2sFU(U2,<J))) 2 0 (3.4.8) 

Lemma 3.4.4. A twice differentiable functional is convex with 

respect to u in B if and only if Fyy(u,())) > 0. 

The proof of the last lemma follows the similar argument for 

Lemma 3.4.2. The same definition and lemma apply to the second variable 

(J). We list them below for later reference. 

Definition 3.4.3. A functional F(u,(J) ) :n(u)xfl(<j) )->-R defined on a 

convex subset C of R((j)) is convex in <j> if 

F(u,X(|)x+(l-X)(j)2)£XF(u,(j)i) + (1-X)F(U,<J)2) (3.4.9) 

for all <1)2 in C, u in R(u), and all X such that 0<X<1. 

Lemma 3.4.5. If F(u,()) ) :fi(u)xS2((l) )-^R is dif ferentiable with respect 

to (p, then F(u;^) is convex with respect to (j) in C if and only if 

F(u,<j)]̂ ) - F(u,(j)2) - ['T'i-'f'2)F<!)(u5(j)2) ] 2 (3.4.10) 

Lemma 3.4.6. A twice differentiable functional is convex with 

respect to (j) in C if and only if F(j,(j,(u,(j)) > 0. 

If strict inequality holds in Eqs. 3.4.7 or 3.4.9 for U]^^U2 or 

ipl^tp2 respectively, the functional F(u,({i) is called strictly convex. 

Also, F(u,<j)) is (strictly) concave in u or (|) if -F(u,(j)) is (strictly) 

convex. 
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The final lemma to be presented in this section concerns a special 

type of functional called convex-concave saddle functional. A functional 

is convex-concave saddle functional if it is convex in u and concave in <ji. 

If the functional is concave in u and convex in ij) instead, we shall 

call it concave-convex saddle functional. 

Suppose we are considering convex-concave saddle functional. 

It is then not difficult to see that we can write Eqs. 3.4.8 and 3.4.10 

in slightly different forms: 

F(ui,<()j) - F(uj,(t)j) - (û -uj ,Fu(uj jUj) ) > 0 (3.4.11) 

and 

-[F(uij<t>j) - F(ui,i)ii) - [(j) ] 2 0 (3.4.12) 

respectively. By adding two together, we obtain the following lemma. 

Lemma 3.4.7. If F(U,!Î>) :n(u)xn(<)))->-R is differentiable, then F(u,(f>) 

is a convex-concave saddle functional on BxC if and only if 

F(ui(()i) - F(uj,(t)j) - (ui-Uj,Fu(uj,(j)j)) - [(l)i-(}>j,F|j,(ui,(|)j_)] > 0 

(3.4.13) 

Notice that the inequality in Eq. 3.4.13 will reverse if we are 

considering concave-convex instead of convex-concave saddle functional. 

This last lemma is probably the most important result for our purpose 

as it is shown in the next section. 

3.5. Complementary Variational Principles 

Finally, we are in a position to present the theorem that is the 

culmination of careful and systematic discussion of previous sections. 
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This theorem would be the most general form of complementary extremum 

principles we will be connected with. Because of its generality, the 

usefulness and implications of the theorem are not immediately obvious: 

we must wait until the next chapter to appreciate them. For now we 

will just present the theorem for the sake of completeness. 

Theorem 3.5.1. Let I(u,(j)) be a differentiable functional. Also, 

let 0% and ^2 be the sets of functions = {(u,<J)) ; lu=0} and 

^2 = {Then, if I(u,ifi) is a concave-convex saddle 

functional, the complementary extremum principles 

Ku,*) < I(ui,<i)i) (3.5.1) 

and 

I(u2,<f>2) < Ku,*) (3.5.2) 

hold where (u]^,4'i) and (u2,<!'2) belong to 0]^ and ^2» respectively, 

and (u,(|)) is the intersection of 0̂  ̂ nd 2̂- In other words, (u,(|)) is 

a critical point of I. If I is a convex-concave saddle functional, 

instead, the inequalities in Eqs. 3.5.1 and 3.5.2 are reversed. 

In the inequalities 3.5.1 and 3.5.2, subscripts 1 and 2 are 

added to signify that the functions belong to and ^2, respectively. 

The equalities hold only when <î>]^ and u^ are solutions of the stationary 

equations ly^O and l(j,=0. In Fig. 3.5.1, an attempt is made to represent 

the theorem geometrically. It is intended only to be a visual aid in 

grasping essential concepts of the theorem. 

Proof. Suppose I(u,i})) is a concave-convex saddle functional. 

By Lemma 2.4.7, we then have 

I(ui,(j)i) - I(uj,(i)j) - (ui-uj,ly(uj,(})j)) - [(l)i-(!)j,l̂ (ui,tj)ĵ )] > 0 

(3.5.3) 
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I(U,0) 

Figure 3.5.1. Concave-convex saddle functional I(U..$) 
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By assumption, Iy(u]^,(|)i) = 0 and I^(u2;*2) ~ 0- Also, stationarity 

requires lyCujcj)) = 0,1 (u,*) = 0. If we now let (uj^,({)= (u,<|)) 

and (uj ,((i j)=(u%,({)%) , the inequality (3.5.3) becomes 

I(u,(i))-I(u]̂ ,ij)]̂ ) £ 0 (3.5.4) 

which proves Eq. 3.5.1. Next, let (uj^,*j^) = (u2,(f)2) and 

(uj,(j)j) = (u,(i)). The result is 

I(u2:<|)2) " l(u,((>) < 0 (3.5.5) 

proving (3.5.2). 
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4. REFORMULATION OF A CLASS OF LINEAR BOUNDARY-VALUE PROBLEMS 

4.1. Introduction 

In a variational problem, we are given an integral to be minimized 

or maximized. By changing the integral into a function of a parameter 

E, we reduced the problem to a maximum-minimum problem of a function 

of single variable e. This procedure yielded the necessary condition 

of Euler and Lagrange. 

Often times, however, the problem is posed to us as differential 

equations of some kind with given boundary conditions. If one wants 

to recast the problem as variational integrals, he or she must solve 

the inverse problem. In the inverse problem, one begins with a differ­

ential equation and tries to find an integral whose stationary equations 

correspond to the problem at hand. Such a topic is discussed by various 

authors [13,14,35]. 

The main advantage of the variational formulation lies in the 

fact that it is well-suited in obtaining an approximate solution to 

the original boundary value problem. The Ritz method, for instance, 

yields an approximate solution that converges--at least in theory--to 

the exact solution [35]. There is another attractive aspect of this 

approach to the boundary value problem. In many problems of physical 

science or engineering, the stationary value itself is often an important 

physical quantity of great interest [25,35]. Therefore, it is important 

to point out that this quantity can be estimated quite accurately even 
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though the trial function does not even resemble the exact solution [51]. 

In this chapter, we will be concerned with only a certain class of 

problems that can be reformulated as complementary variational integrals. 

The symbols and concepts presented in this chapter closely follow those 

presented by Arthurs [14]. 

4.2. The Inverse Problem 

Consider a class of boundary value problems 

T*T(|) + Q(j) = f in V (4.2.1) 

cj(j) = 0(j)g on 3V]̂  (4.2.2) 

o*T(|) + G* = o*ug on 3V2 (4.2.3) 

Our goal is to find an integral whose stationary equations correspond 

to Eq. 4.2.1 to Eq. 4.2.3. The boundary 9V of region V consists of 

two parts : 9V]^ and 3V2. The operators T, T*, a, and a* are assumed 

to belong to the special class discussed in the previous chapter. 

Symbols Q, f, and B are given functions in V and (jig, ug are given 

functions on the boundaries 3V]^ and 9V2, respectively. This type of 

problem occurs quite often in nature [14]. 

Before discussing the variational formulation of Eqs. 4.2.1 to 

4.2.3, it is worth pointing out some background. The basic idea under­

lying the complementary variational principles originates from the 

Hamiltonian principle in classical Newtonian dynamics [13]. In Hamilton's 

principle, Newton's equations of motion become a variational integral 

with two variables. The stationary equations, called canonical equations, 
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become the governing law for the motion of a particle. The canonical 

equations are a set of coupled equations equivalent to the classical 

Newtonian description of the motion. This splitting of the original 

equation into a coupled set of canonical equations is the very idea 

on which the complementary variational theory is based. 

4.3. The Canonical Equations and Its Action Integral 

The first step in our search for the desired integral--sometimes 

called the action integral—is to split Eq. 4.2.1 into coupled equations. 

The proper splitting is 

T(J) = u in V (4.3.1) 

T*u = f-Q$ (4.3.2) 

0(j) = 0(j)g on 3V]̂  (4.3.3) 

a*u + B<î> = o*ug on 9V2 (4.3.4) 

The new variable u is introduced here and the boundary conditions 

are added for later reference. 

We now turn our attention to the action integral. It must yield 

Eq. 4.3.1 to Eq. 4.3.4 at its stationary point. There are systematic 

general methods by which such an integral could be constructed [39]. 

Discourse to such a procedure, however, is outside our main purpose 

and we must be content with the final result. First, we present the 

action integral, then show that its stationary equations indeed reduce 

to Eqs. 4.3.1 to 4.3.4. 
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Consider the following functional 

l(u,(|) ) = (u,T̂  )-W(u,(() ) - (u,a(()>-(()B) + ̂ [0 ,g<(> ]3V2 " 

[a*UB,<|) ]3V2 (4.3.5) 

which, through the use of adjoint operators, can also be written as 

I(u,(|)) = [T*u,(j)] - W(u,(j)) + (u,0({)g)gŷ  + [o*(u-Ug) + 

>B<|) ]3V2 (4.3.6) 

The second term W(u,<j)) represents some arbitrary functional of variables 

u and (p. Remember that the operators and scalar products belong to 

the special class discussed in Chapter 1. As a result when written 

out explicitly, Eqs. 4.3.5 and 4.3.6 become integral expressions. 

By following the usual technique of replacing u and cj) with U+En and (j)+e Ç, we 

calculate the stationary equations. Each term of Eq. 4.3.5, for instance, 

becomes 

(u+en,T(!)+eTÇ) = (u,T<T)) + (u.Teg) + (en.Tij,) + (ETI.TËÇ) (4.3.7) 

W(u+eTi j<l)+sÇ) = W(u, (j)) + (en,Wu(u#)) + [eÇ, W^(u,(|))] + 02 (4.3.8) 

(u-l-£ii,a((ji-(J>B)+aeÇ)gV]̂  ~ (UJO((J)-iJ)b))3vi + 

(en + (sn (4.J.9) 

îs[<t'+eÇ,B())+eSÇ]gY2 = B 4: 

(4.3.10) 

[a*UB,(j)+eÇ]9v2 = [o*UB,(|)]g+̂  [o*UB,eÇ]gv2 (4.3.11) 

Using these expressions the expansion of Eq. 4.3.5 about u,ij) becomes 

l(u+sn ,<!>+sÇ) = I(u,ij)) + (en, (Tij)-Wy)v - a(ip-(ps)dy^) + 

[eÇ,(T*u-W(j,)v + (G*u+6(|)-G*UB)gv2] (enjTeÇ) -

(en,oeg)3v^ + ̂[eÇjgeÇ] +02+03 (4.3.12) 

Referring back to Eq. 3.3.4, we can identify the derivatives as 
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lu = (Ttj)- Wu)y - [o((j)-i|)B)]3V]̂  (4.3.13) 

= (T*u-W(j))y + [a*u+B(ji-r̂ uglg ̂2 (4.3.14) 

Now, we invoke Theorem 3.3.2. According to this theorem, the 

functional of Eq. 4.3.5 is stationary at Ujij) such that 1^=0 and 1^=0. 

Therefore, we obtain 

T(|) = Wu 

in V (4.3.15) 

T*u = W(j) (4.3.16) 

0({) = 0(|)g on 3V% (4.3.17) 

o*u + S(j) = a*ug on 3V2 (4.3.18) 

from the derivative expressions in Eqs. 4.3.13 and 4.3.14. Comparing 

Eqs. 4.3.1-4.3.4 with Eqs. 4.3.15-4.3.18, it is immediately clear that 

if we choose 

Wu = u (4.3.19) 

W(|) = f - Q* (4.3.20) 

the stationary point of Eq. 4.3.5 becomes the original boundary value 

problem as desired. Simple calculations show that the functional W(u,4') 

with above derivatives has the form 

= ^(u,u) - + [f,4'] (4.3.21) 

Finally, we obtain the desired action integrals 

l(u,4)) = (u.T*) - ^(uju) + îêl't',Q<!'] - [f ,4"] - (u,a((j)-(J)3) )gv^ + 

^[4),Wlavg " (4.3.22) 

I(u,(j)) = [T*u,(j)] - ̂ (u;u) + ,Qi{) ] - [f ,4)] - (u,0(j)g)9v̂  + 

[o*(u-ug),({)]gv2 + ̂ [4) ,G4i]3V2 (4.3.23) 

where the last equation is the Eq. 4.3.6 with W(u,ij)) written out explicitly. 
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4.4. Stationary Property of the Action Integral 

In the previous section, we were able to,start with a given boundary 

value problem of a certain class and find its action integral. However, 

nothing was mentioned about the nature of the stationary point. As 

with ordinary function, a stationary point is either maximum, minimum 

or saddle point. In the following, we show that added restriction 

on the original problem of Eqs. 4.2.1-4.2.3 leads to complementary 

extremum principles. 

Referring back to Theorem 3.5.1, it is seen that either convex-

concave or concave-convex- saddle functional yields complementary extremum 

principles. Keeping this in mind, let us examine the action integral 

of Eq. 4.3.22. Remember the expressions of Eqs. 4.3.22 and 4.3.23 • 

are equivalent integrals in a different form. Therefore, any result 

that holds for one is automatically also valid for the other. Two 

lemmas (3.4.3 and 3.4.5) tell us that we look at expressions 

l(u]̂ ,<))) - I(u2,<l') - (u]̂ -U2:Iu(u2,4i)) (4.4.1) 

and 

l(u,(f>i) - I(u,i{)2) - (4.4.2) 

where the derivatives are given by Eqs. 4.3.13 and 4.3.14 via Eqs. 4.3.19 

and 4.3.20. After some manipulation and rearranging, Eqs. 4.4.1 and 

4.4.2 become 

I(ui,<|)) - I(u2,<f') - (u]̂ -U2,Iu(u2,i{)) ) = -4(U]̂ -U2,U]̂ -U2) (4.4.3) 

and 
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I(u,({)][) - I(u,<!)2) " + 

hl^l-4i2>^^'t>l'<i>2'^^dV2 (4.4.4) 

Therefore, the functional of Eq. 4.3.22 is always concave in u. If 

we choose Qj3 as 

Q > 0 and B > 0 (4.4.5) 

the functional becomes convex in ({). The condition of Eq. 4.4.5 is, 

therefore, the sufficient condition for the functional of Eq. 4.3.22 

to be concave-convex saddle functional. We give this fact an elevated 

status and state it as the following theorem. 

Theorem 4.4.1. If Q>0 and 3>^0, then the action functionals 

of Eqs. 4.3.22 and 4.3.23 are concave-convex saddle functionals. 

4.5. Complementary Variational Integrals 

Assuming that the condition of Eq. 4.4.5 is satisfied. Theorem 3.5.1 

guarantees existence of two integrals--I(û ,4)]_) and I(u2,(!'2)""which 

approach the stationary value in a complementary fashion. Let us see 

what these functionals look like. 

Again referring to Theorem 3.5.1, we see that we need two sets of 

pairs of functions, 0]^ = { (u,<()):ly=0} and ^2 ~ { (u,(|) ) : I(()=0} . In the 

complementary variational theory, these sets are trivially generated in 

the following way. In order to satisfy I^ = 0, we refer to Eq. 4.3.13. 

Since the first and the second terms are defined in a region V and 

its boundary 3V, respectively, both terms must vanish independently. 

This is accomplished first by picking (j> arbitrarily from the set of 
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functions that assume the value (|ig on This forces the boundary 

term to vanish. Next, solve the first term for u in such a way that 

it vanishes. The pair (u,({) ) generated in this fashion forms a member 

in the set In a similar manner, the set ̂ 2 is generated from 

Eq.4.3.14. Here, we need an assumption that the first and the second 

terms can be solved for é . If this is indeed the case, then = 0 can 

be satisfied by picking u arbitrarily, without any restriction in V 

as well as on the boundary, and solving Eq. 4.3.14 for (fi. The pair 

formed in this way constitute a member in ̂ 2. 

With sets and ^2 constructed, we are now able to form two 

complementary functionals. The functional I(ui,<()]^) is obtained from 

Eq. 4.3.22 by substituting the function u from The calculation 

is straightforward and the result is 

J ( é i )  = i5(T<j)i,Ti|>i) + - [f,if>i] + 

- 3^2 (4.5.1) 

The subscript one is added to signify that the function è is a member 

of the set This integral gives the upper bound to the stationary 

value. Substitution of ( p  from ̂ 2 into Eq. 4.3.23 gives the other functional 

I(u2,(|>2)' Again, after some simple calculations, one obtains the desired 

integral 

G(u2) = -4(u2,u2) - (f-T*u) ,f-T*u] + (u2,0'}'b)8V]^ 

- !g[6''io*(u2-ug) ,o*(u2-ug) (4.5.2) 

The subscript two signifies that U2 is a member of ^2- In both functionals 

(Eqs. 4.5.1 and 4.5.2), the designations have been changed to J(<!>i) 

and G(u2), respectively. This is to emphasize the fact that they are 
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now functions of only one variable. If we now substitute arbitrary 

functions ,U2 to the corresponding functionals, Theorem 3.5.1 

guarantees that the stationary value of the functional is always trapped 

between the two functional values and G(u2). The functionals 

of Eqs. 4.5.1 and 4.5.2 are the desired reformulation of the boundary 

value problem of Eqs. 4.2.1 through 4.2.3. 

Although Theorems 3.5.1 and 4.4.1 together insure the complementary 

nature of the functionals and G(u2), it is reassuring to check 

them directly. By following the conventional procedure of replacing 

4)2 with <(' + eÇJ each term in Eq. 4.5.1 becomes 

Î5(T(!)+T£Ç,T(()+TeÇ) = ̂ (T*,T4,) + (Tiji.TeÇ) + JgCTeÇ.TeÇ) (4.5.3) 

îs[<;)-ftÇ,Q(j)+Q£:Ç] = ,Q(j)] + [(!),QeÇ] + ̂ [sS.QeS] (4.5.4) 

[f,ij)+eÇ] = [f ,*] + [f,eÇ] (4.5.5) 

is[iJ)+e?5B(f)+SeC]gv2 ~ [4) «GeSlgVg 

(4.5.6) 

[a*UB,()>+eÇ]3V2 ~ [o*UB,(|)]gv2 (4.5.7) 

Grouping the terms with the same powers of e, we obtain 

j((!)+eO - J((t)) = [T*T(|)+Q(})-f,eC] + (u.oeUgv̂  + 

[ G*u+6(|) -o*ug, E S ] g y ̂ + ̂ (̂TeÇjTeO + 

+ %[eÇ,BeÇ]gv2 (4.5.8) 
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where J((j)) is !:he exact stationary value. Now, assuming the functional 

j(it>+£^) is stationary at <f>, we let the first variation vanish. The 

result is 

T*T(!> + Q(J) = f in V (4.5.9) 

o* = od)g on 3Vi (4.5.10) 

a*T({) + g* = G*ug on 9V2 (4.5.11) 

recovering the original boundary value problem as expected. The total 

variation of Eq. 4.5.8 is seen to be positive if Q 0 and B 0. 

This last result is what we wanted to confirm. 

Following the same procedure, we can check the functional G(u2). 

Its total variation is calculated to be 

G(u + eri) - G(u) = -(u,£n) + [Q"̂ (f-T*u) ,T*en] + (en ,a(|)g)gv̂  -

[e"la*(u-UB),a*en]3V2 " ̂(en,En)-

Î5[eÇ,QeÇ] - (4.5.12) 

where G(u) is the exact stationary value. The second variation is 

clearly negative, as predicted by Theorem 3.5.1 

4.6. A Simpler Problem 

So far, we have discussed the boundary value problem in which the 

boundary consisted of two parts, and 3V2. This type of problem 

is generally referred to as the Dirichlet-Newmann problem. There is 

another type of problem called the Dirichlet problem. Unlike the 

Dirichlet-Newmann problem, the boundary is not divided in this type 
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of problem. In this section, a brief discussion is given for the 

Dirichlet problems defined by 

T*T(j) + Qj) = f in V (4.6.1) 

atj) = 0({)g on 3V (4.6.2) 

In order to reformulate the problem as complementary variational 

integrals, we follow the same steps illustrated in the previous section. 

There is no reason to repeat them here so only the final results are 

presented in the following paragraph. 

All three functionals can be obtained from the corresponding 

functionals for the Dirichlet-Newmann problem by suppressing the scalar 

product terms on 3V2. We list them below for later reference. 

I(u,(|)) = (u,T(|)) - ̂ (u,u) + h [ < P , Q P ]  -  [f ,* ] - (u,a((|)-(f)g))gy 

(4.6.3) 

= [T*u,(|)] - H(u,u) - [fjH - (u,0({ig)gY 

(4.6.4) 

:(*]_) = (̂T(J)i,T({)i) + ̂ [*1,0411] - [f,411] (4.6.5) 

G(U2) = -^(u2,u2) -^[Q"^(f-T*U2) Jf-T*U2] + (u2,(7({)g)gy (4.6.6) 

The last two equations give the desired complementary bounds. 

4.7. Some General Aspects of the Theory 

At this point, it is appropriate to point to some facts not mentioned 

in the previous sections. When constructing the set we needed to 

force the derivative to vanish. In this process, the function <j) 

had to come from a member of a certain restricted class of functions. 
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Therefore, the maximum principle K J(^i) is valid only when 

the trial functions are picked from the class of functions that satisfy 

the boundary condition (j)]^ = (j)g on 3V. In the Dirichlet-Newmann problem, 

this restriction is required only over the part of the boundary 9V]̂ . 

Theorem 3.5.1 also required construction of SÎ2 such that derivative 

I({) = 0. To meet this requirement, we had to assume that the first and the 

second terms in Eq. 4.3.14 are solvable for tji. This is possible only when 

Q ̂  0 and g # 0. The trial function U2 is then completely arbitrary 

when these conditions are satisfied. Unfortunately, if Q = 0, then in 

both Dirichlet and Dirichlet-Newmann-type problems, the trial function U2 

must be picked from the class of functions such that T*U2 = f in V. If 

3=0, in a Dirichlet-Newmann problem, U2 must satisfy o*U2 = o*ug on 

3V2. In a Dirichlet problem, the boundary 3V2 is missing and U2 is 

always arbitrary on the boundary 9V. 
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5. APPLICATION TO MAXWELL'S EQUATIONS 

5.1. Introduction 

In this chapter, we will briefly point out the difficulties 

encountered when one tries to apply the complementary variational theory 

to Maxwell's equations. We shall first discuss an attempt to formulate 

Maxwell's equations in their most general form. A discussion of 

sinusoidally-varying fields concludes the chapter. 

5.2. Maxwell's Equations in General Form 

Electromagnetic phenomena are governed by the vector equations 

— — 9% 
VxE = - (5.2.1) 

V xH = M (5.2.2) 
a t  

V»eE = q (5.2.3) 

V'B = 0 (5.2.4) 

where we are conforming with the traditional use of symbols E, H, D, 

ÏÏ, and q. These symbols represent electric flux, magnetic flux, 

and charge density fields, respectively. Equation 5.2.3 can be derived 

from Eq. 5.2.2 through the continuity equation 

V-J = - ̂  (5.2.5) 
3t 

while taking the divergence of both sides of Eq. 5.2.1 yields Eq. 5.2.4. 

Therefore, Eqs. 5.2.1 and 5.2.2 are the only independent relationships [28]. 
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There are two approaches in an attempt to formulate Eqs. 5.2.1 

and 5.2.2 as complementary variational integrals. The first approach 

tries to view the two curl equations as canonical equations of some 

functional. In recent years, Anderson and Arthurs have discussed this 

point of view [2,6,10]. There are several ways in which Maxwell's 

two curl equations can be regarded as canonical equations. One of 

these is to regard the two curl operators as T and T*. The next step 

in the variational formulation is to find the functional W, whose partial 

derivatives equal the right-hand side of Eqs. 5.2.1 and 5.2.2. However, 

Anderson and Arthurs show that such a functional W does not exist [10]. 

In Reference 10, the authors introduce two variables, in addition to 

E and H, and rewrite Eqs. 5.2.1 and 5.2.2 as two pairs of coupled curl 

equations. The authors were then able to derive several variational 

functionals as functions of four variables. 

In Reference 2, a different point of view is discussed. The 

authors regard time-derivative operators in Eqs. 5.2.1 and 5.2.2 as 

T and T*. By calculating the functional W, they were able to derive 

a variational integral. Part of Reference 6 discusses the derivation 

of two variational integrals from the original action integral presented 

in Reference 2. However, these integrals do not give the dual extremum 

principles as implied by the authors. 

The second approach mentioned above starts with the reduction 

of Eqs. 5.2.1 and 5.2.2 to a single wave equation. Specifically, we 

try to see if the equation 
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VxVxE+ye (5.2.6) 

belongs to the class of boundary value problem 

T*T<p+Q <{; = f (5.2.7) 

discussed in the previous chapter. Equation 5.2.6 is written in terms 

of the electric field E, but a similar equation holds for the magnetic 

field H. 

The difficulty here is that the time derivative in the left-hand 

side of Eq. 5.2.6 is, in general, not proportional to the function 

E. If it is, the proportionality constant can be considered as part 

of Q in Eq. 5.2.7. 

5.3. Time-Harmonic Wave Equation 

Let us now snecialize Eq. 5.2.6 to a sinusoidally-varying field 

and write it as 

VxVxE-u^VieE = -ji ̂  (5.3.1) 

By identifying operators 

T = curl (5.3.2) 

T*= curl (5.3.3) 

we recognize immediately that Eq. 5.3.1 is a particular case of 

Eq. 5.2.7. Therefore, the general results of Chapter 4 are applicable. 

Equations 4.5.1 and 4.5.2 should yield two variational integrals. 
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Unfortunately, the quantity Q in Eq. 5.3.1 is 

Q = -w^wE<0 (5.3.4) 

This violates the sufficient condition, Theorem 4.4.1, for the dual 

extremum principles. It is also evident from Eq. 4.4.4 that the condition 

Q >0 (5.3.5) 

is also a necessary condition for the dual extremum principles to be 

valid if we assume boundary conditions are of nonmixed type. Therefore, 

Eq. 5.3.4 implies that the boundary value problem, Eq. 5.3.1, cannot 

be formulated as two complementary variational integrals. Equations 

4.4.3 and 4.4.4 say that both integrals, J(({)) and G(u), will approach 

the stationary value from one side. 

The above discussion indicates that the theory developed in Chapter 4 

is not directly applicable to Maxwell's equations. In the following 

chapters, we shall present an alternate approach. We will find that 

the power series form of Maxwell's equations can be formulated as two 

complementary variational integrals. 
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5. A POWER SERIES APPROACH TO SINUSOIDALLY-VARYING 

ELECTROMAGNETIC FIELDS 

6.1. Introduction 

In the previous chapter, we saw that the complementary variational 

theory in its original form does not apply to the basic electromagnetic 

field laws. Even if we considered the special case of sinusoidally-

varying fields, there is difficulty. The very fact that the quantity 

00is inherently positive makes Q=-a)|ie negative, violating the 

assumption in Theorum 3.4.1. The result is that the stationary principles 

still hold, but the complementary extremum principles fail. 

It is clear then that in order for the complementary extremum 

principles to be useful in the electromagnetic field theory, we must 

either modify this mathematical theory--if it be possible--or rewrite 

the basic electromagnetic field equations in a different form. In this 

chapter, we will consider the latter option. It will be shown in the 

next chapter that the complementary variational theory is applicable 

to the equivalent but modified forms of Maxwell's equations. 

The concepts and symbols discussed here closely follow that of 

L. M. Magid [33]. In his book. Electromagnetic Fields, Energy, and 

Waves, Magid carefully develops the concepts and touches upon many 

insightful observations. He also gives thorough treatment of example 

problems illustrating the usefulness of this approach to electromagnetic 
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fields. For our present purpose, we will focus only on the development 

of the concepts. 

The three-dimensional space in which solutions of Maxwell's equations 

are sought is sometimes referred to as the "region of fields." We will 

retain the same useage. However, when the meaning is clear from the 

context, we will simply refer to is as "region." 

It is a physically observable fact that the sinusoidal electro­

magnetic field is a function of the spatial configuration and the 

properties of the region of fields V, time t, position coordinates 

X, y, z, and frequency w. If we fix region V, time t, and the position 

coordinates, the field becomes a function of frequency w alone. 

It is, therefore, legitimate to consider a Taylor series expansion 

of each field quantity in w about 0=0 [33]. For example, it is possible 

to write electric, magnetic, current density, and charge density fields 

as follows: 

6.2. Frequency Dependence of Single-Frequency 

Sinusoidal Steady-State Fields 

E(x,y,z,T,u) = e.(x,y ,z,T ) + wei(x,y,z,T ) + 

0)̂  e2(x,y,z,T) + • • • 

H(x,y,z,T,U)) = ho(x,y,z,T) + A)hi(x,y, z ,T ) + 

0)̂  h2(x,y,z,T ) + • • • 

j(x,y,z,T ,(JJ) = jo(x,y,z,T) + œ j ̂ (x,y, z ,T ) + 

j2(x,y,z,T) + 

( 6 . 2 . 1 )  

( 6 . 2 . 2 )  

(6.2.3) 
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p(x,y,2,T,aj) = po(x,y,z,T) + (opi(x,y,z,T) + 

p2(x,y,z,T) + (6.2.4) 

where the left-hand side explicitly shows independent variables for 

fixed region V. The variable x stands for œt. The variables u and T=wt 

can be considered independent variables because u and t can be varied 

independent of each other [33]. Each coefficient of powers of w can 

be evaluated by differentiating a required number of times and evaluating 

both sides of equality at w=0. For example, 

for the electric fields. However, these two expressions are hardly 

used in practice. The difficulty is that the total field E(x,y,z,T,w) 

is rarely known. If the exact field is known, there is no reason to 

resort to power series approach. 

Let us now deduce the consequences of representing all the field 

quantities in Maxwell's equations as infinite power series in w. 

First, rewrite Maxwell's equations (Eqs. 5.2.1-5.2.4) as 

(6.2.5) 

( 6 . 2 . 6 )  

6.3. kth-order Field Equations 

VxE = -0) 3B/8t (6.3.1) 

VxH = J + u) 3D/3t (6.3.2) 

V- D = p (6.3.3) 

V •• B = 0 (6.3.4) 
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in which T=WT and dr/dt is replaced by U. Now, substitute a power 

series representation of the total field for each field quantity. 

For example, Eq. 6.3.1 will look like 

V xeo + wVxei + Vxe2 ' 
3b 3b 3b 

= -ui + u —^ ^ • • • ) (6.3.5) 
3T 9T DT 

where term-by-term differentiation, with respect to the variables 

x,y,z,T, is assumed to be valid. This equation can be rewritten as 

(Vxeg) + w(Vxe%+3bQ/3t) + u^(vxe2+3b]^/3t) + ••• = 0 (6.3.6) 

In Eq. 6.3.0, we notice that the set of functions ( 1,(»,a)^, • • *) 

are linearly independent. Therefore, each coefficient must be separately 

zero in order for this equation to hold for all values of w. Performing 

similar calculations for remaining Eqs. 6.3.2-6.3.4, we obtain the 

desired results. 

"vxeQ = 0 (6.3.7) 

^xÏÏQ = TO (6.3.8) 

V'd'q = pQ (6.3.9) 

^•bg = 0 (6.3.10) 

VJq =0 (6.3.11) 

for the zero-order fields and 

x̂ë]̂  = - 3bk-i/3T (6.3.12) 

Vxh^ ~ Jk 3d}^_]_/3T (6.3.13) 

= -P]j (6.3.14) 

= 0 (6.3.15) 

'̂Tk ~ " ̂ Pk-l/̂ "̂  (6.3.16) 



www.manaraa.com

52 

for the kth-order fields where k^l. The kth-order boundary conditions 

are obtained from the original boundary conditions given in Chapter 5. 

The calculation procedure is the same as above and straightforward. 

There is no reason to repeat them here so we shall simply list the 

results. 

= 0 (6.3.17) 

nx(h%-TT]-%)̂  = (6.3.18) 

n"(̂ i"?ii)k ~ nk (6.3.19) 

n-(ïïi-"Bxi)k = 0 (6.3.20) 

— _ 

"•(jl-jll)k + Vg ' kk = - —— (6.3.21) 

These boundary conditions apply to fields of all orders including 

zero-order fields with one minor correction. In Eq. 6.3.21, the right-

hand side of equality becomes zero for zero-order fields. 

6.4. Significance of the kth-order Field Laws 

Perhaps the most important feature is the fact that, like zero-order 

fields, the kth-order field laws for k>l are not coupled anymore [33]. 

In the original Maxwell's equations E and % for example, are coupled 

through their time derivative terms 3E/3t and 3H/3t. A closer look 

at kth-order field laws, however, shows that the right-hand side of 

the curl eauations contain the derivative terms on the k-lth-order 

fields not on the kth-order fields. This is very significant. The 

fact that the kth-order E and H are not coupled through their time 

derivative terms means that the equations become much easier to 
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solve [33]. In fact, the time derivative terms in the kth-order 

can be regarded as a source, and the resultant kth-order fields become 

static-like fields [33]. 

Also some implications on the zero-order fields deserve to be 

mentioned. The zero-order field equations have the same mathematical 

form as that of the static field equations. However, with later appli­

cation in mind, it is important to point out some differences. The 

zero-order fields are, first of all, time-varying fields. For a fixed 

point in the region of fields, the zero-order fields vibrate sinusoidally 

as time passes. This is in drastic contrast to the static fields that 

are completely independent of the time variable t. Secondly, the zero-

order fields are part of the building blocks to the exact sinusoidally 

varying fields through the infinite summations such as Eqs. 6.2.1-6.2.4. 

The zero-order field acts as a source to the first-order field, which 

in turn becomes a source to the second-order field [33]. 

Such a concept is entirely missing from the static fields. In 

this sense, the static field is completely divorced from the time-varying 

field, while the zero-order field is not. Therefore, we conclude 

that the two fields, static and zero-order, are conceptually quite 

different from each other. We are emphasizing these points here because 

in Chapter 8, zero-order example problem is worked out as a specific 

application of the complementary variational formulation of kth-order 

field laws. 

In his book Magid [33], works out three example problems: a 

capacitor, an inductor, and a resistor. He shows that useful information 
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on impedance variations as a function of frequency w are obtained from 

the first three terms of the series expansions. The crudest approximation 

to the true fields is to neglect every higher order terms except the 

zero-order. Notice that even in this crudest approximation the time 

variation factor ut is accounted for. Once the ^ero-order fields 

are obtained, which require no more effort than solving a static problem, 

they can be used to obtain first-order fields, which in turn can be 

used for obtaining second-order fields and this process can be continued 

to all orders [33]. The next paragraph further illustrates the importance 

of power series approach to engineering electromagnetic field problems. 

This whole paragraph is quoted from the book by L. M. Magid [33]. 

"The quasi-static fields are defined as the time-

varying fields correct up to and including the first-order 

contribution. The sinusoidally-varying quasi-static 

E and H fields, for example, are given by 

E = eg + e]^ (6.4.1) 

H = ho + hi (6.4.2) 

The quasi-static fields defined above are clearly 

approximations to the corresponding exact field values 

that would be given by the entire infinite series of 
Eqs. 5.2.1-5.2.4. They consist, to be sure, of only 

the first two terms of each of those series. Although 
one's first reaction here might be to consider the above 

quasi-static fields as relatively poor approximations 

to the exact series solutions, this is not necessarily 

the case in many low frequency (and some not-so-low 

frequency) systems. The quasi-static fields frequently 
offer considerable insight into the response of many 
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systems of practical importance to electrical engineers. 

In fact, the very foundation of circuit theory, ranging 
from the terminal current-voltage characteristics of 

the lumped circuit elements, R, L, and C, to Kirchhoff's 

laws, follows directly from Maxwell's equations as 

quasi-static approximations." 

6.5. Alternative Forms 

Equations 6.3.12-6.3.21 can be rewritten in slightly different forms 

that are more convenient [33]. The time derivative terms with respect to 

T in the curl equations will be replaced with terms differentiated with 

respect to t rather than x. This brings the kth-order equations to a 

closer resemblance to the original Maxwell's equations. 

For the purpose of illustration, consider Eq. 6.2.1. We define 

the new terms in the power series as 

— A _ 
EJ^Cx.y ,z,T ,0)) = A)kej^(x,y ,z,T ), k^O (6.5.1) 

so the total field will look like 

E(x,y,z,T ,(JJ) = Io(x,y,z, T )  + fiCx.y,Z,T ,0)) + 

E2(x,y, z,T ,0)) + ••• (6.5.2) 

Unlike the previous kth-order fields, the new kth-order fields 

are dependent on frequency u. The explicit dependence is expressed 

by Eq. 6.5.1. 
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The next step in the derivation is the multiplication of 

Eq. 6.3.12 by The result is 

V X w'^eiç^ = -M (6.5.3) 
3 

3 

where in the right-hand side is split into two parts as shown 

Using the new definition, Eq. 6.5.1, it can be written 

V x E k  =  - ^  = -H k-l (6.5.4) 
3t 

in which the derivative with respect to t has been replaced by the 

derivative with respect to t. This step is straightforward if we 

recall that T=a)t. 

Equation 6.5.4 is the desired result. As indicated earlier, 

this equation has the same form as the original Maxwell's equations, 

except for the subscripts in E and B. We can carry out the similar 

calculations on Eqs. 6.3.13-6.3.21 with the results 

^ X E q = 0  ( 6 . 5 . 5 )  

V X HQ = JQ (6.5.6) 

V- D'O = PQ (6.5.7) 

V* Bq = 0 (6.5.8) 

^"^0=0 (6.5.9) 

for the zero-order fields, and 

3B, , 
V xËk = - —^ (6.5.10) 

3D 
V X Hi, = Jk + —— (6.5.11) 

K K at 

V • \ ̂ Pk (6.5.12) 

V • Bk = 0 (6.5.13) 

— — 9p 
^ \ - -111 (6.5.14) 

^ 3t 

for the kth-order fields where k>l. The boundary conditions become 
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n X = 0 

n X (HX-HXI)K = % 

n • (Di-Dii)k = 

n • (Bj-Bjj)k = 0 

— — — — 
n • (Ji-Jii)k + Vj- kk = —^ 

In Eq. 6.5.19, the same comment made on Eq. 

the right-hand side of the equality becomes 

(6.5.15) 

(6.5.16) 

(6.5.17) 

(6.5.18) 

(6.5.19) 

6.3.21 applies, that is, 

zero for zero-order fields. 
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7. COMPLEMENTARY VARIATIONAL FORMULATION OF kTH-ORDER FIELD LAWS 

7.1. Introduction 

We are finally in a position to discuss the application of the 

complementary variational principles to the electromagnetic field laws. 

In the following, it will be shown that the kth-order field laws dis­

cussed in the previous chapter can be formulated as two variational 

integrals for which dual (complementary) extremum principles hold. 

However, some restrictions must be placed on the region of fields before 

such formulations are possible. 

7.2. Property of Region of Fields 

As far as electromagnetic fields are concerned, a region of space--

whether vacuum or filled with matter--can be characterized by three 

parameters [29]. These parameters are permittivity e, permeability u, 

and conductivity a. There are certain standard terms used to describe 

the nature of materials that apply to many physical properties. It 

is common to retain this usage in describing electric and magnetic 

properties as well. The equivalent definitions of the following terms 

can be found in many textbooks such as Ref. 28. 
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1. If all three parameters of the material do not depend on 

position, the term homogeneous applies; otherwise, the 

material is said to be inhomogeneous. 

2. If all three parameters of the medium are the same regardless 

of the direction of any of the field vectors, it is called 

isotropic. If the relations depend on field directions, 

the medium is anisotropic. 

3. If all three parameters do not depend on the amplitude of 

the field, the medium is called linear; otherwise, it is 

nonlinear. 

4. If all three parameters change with time, the medium is called 

time-varying; otherwise, it is time-invariant. 

The solution of Maxwell's equations depend strongly on the properties 

of the region for which solutions are sought [33]. Normally, it is 

very difficult or impossible to solve field equations for the very 

general cases of inhomogeneous, anisotropic, nonlinear, and lossy region. 

For this reason, many textbooks on the subject discuss only the special 

cases for which exact solutions can be found. A similar difficulty 

seems to be true when one tries to formulate Maxwell's equations as 

variational integrals. Difficulties seem to multiply exponentially as 

one allows more properties to be general. For example, Konrad's paper in 

1976 [30] appears to be the first to present a three-component variational 

formulation valid in a region of anisotropic media. Similarly, it was 

not until Chun and Chuen's work was published in 1980 [21] that the 
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loss in terms in variational integrals could be systematically accounted 

for. In their paper, they discuss the general nonself-adjoint problem 

and apply it to Maxwell's equations with loss. 

In the following sections, it will be shown that the dual extremum 

formulations of kth-order field laws are possible at least in the 

lossless, inhomogeneous, isotropic, linear, and time-invariant region. 

Notice that the inhomogeneity is the only property allowed to be general 

while other properties are restricted. Letting other properties become 

general introduces difficulties unsurmountable at the present time. 

However, allowing inhomogeneity of the region is very significant. 

There are many problems in engineering electromagnetics where all the 

properties of a region of fields are restricted. This is evident from 

the casual reading of some popular college level textbooks on the subject, 

such as Ref. 29. Allowing inhomogeneity will certainly enlarge the 

class of solvable engineering problems significantly. 

7.3. Impressed Sources J and P 

In the previous section, we indicated that the conductivity will 

be assumed to be zero. Under this assumption, the current density 

J will be considered to consist entirely of impressed source current. 

In other words, the only induced currents will be the electric and 

magnetic displacement currents, and J will be considered as a source 

(cause) of the field. 



www.manaraa.com

61 

The variational formulation presented in the following sections 

depends strongly on the nature of J and p. To be precise, for the 

charge density, the zero-order term will be the only term allowed 

to take on a nonzero value. We must assume all the other terms p^ 

to be equal to zero for kH. 

This restriction makes it possible to represent electric field 

for k^l as a curl of some vector field. On the other hand, current 

density fields J^, for k>0, can be allowed to be nonzero. The reason 

for these restrictions will become clear as one follows through the 

mathematical derivations in the following sections. 

In order to develop some insights into the nature of sources J and 

p, let us pause for a moment and reflect on some of the implications 

of the power series approach. Equation 6.5.1 says that the frequency 

is a simple scalar multiplying factor. Frequency does not enter 

into e"^ in any fashion. Let us consider a special class of solutions, 

discussed in the book by Magid [33], which are sufficient to illustrate 

the nature of kth-order fields. These solutions have the general form 

Ek(x,y,z,T ,u)) = (jû^fi^(x,y,z) cos wt (7.3.1) 

where the amplitude consists of multiplied by the spatial factor, 

fj^. It is important to point out that, in general, the vector fields 

fjç^ will be different for different frequencies. This is evident by 

noting the facts that the spatial configuration of the total field 

changes as frequency varies and the spatial information is contained 

only in the term f]^. Each kth-order field vibrates at single frequency 

0). This situation is quite different from the usual series expansions 
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encountered in electrical engineering. Normally, electrical engineers 

talk about Fourier series in which each term in the series vibrates at 

integer multiple of the fundamental frequency. The equation (7.3.1) 

is written in terms of electric field but of course similar equations 

apply to other field quantities. 

It is evident from Eq. 7.3.1 that the zero-order field is the 

only term without the frequency multiplying factor. Furthermore, the 

zero-order field laws (Eqs. 6.5.5-6.5.9) say that these equations are 

completely independent of frequency. (This statement seems to contradict 

the fact that zero-order fields vibrate at frequencyu • However, let us 

quickly remind ourselves that the theory of the power series approach 

is built on the rightful assumption that to and wt are independent.) 

Therefore, unlike every other term, fg in Eq. 7.3.1 is independent 

of the frequency. 

Now, let us go back to the sources J and p. As clear from the 

above discussion, restricting the charge density p to be equal to the 

zero-order term means that its spatial configuration as well as the 

amplitude multiplying factor are independent of frequency w. Of course, 

they may vibrate at frequency w. The current density, on the other 

hand, was allowed to have an unrestricted number of nonzero kth-order 

terms. This implies that the spatial distribution of the total current 

may be a function of frequency. 

This concludes the necessary preliminary discussions and we are 

now ready to discuss the main topic of this chapter, the complementary 

variational formulation of kth-order field equations. 
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7.4. Formulation of Zero-order Electric Field Equations 

For convenience, let us at the outset write down the zero-order 

electric field equations. 

Vx EQ = 0 (7.4.1) 

V * EEQ = PQ (7.4.2) 

The first equation says that Eg is curl-free. As such, it can be repre­

sented by gradient of a scalar field. So, let us write 

EQ = - (7.4.3) 

in which a minus sign is added to make the function cj) represent a real 

physical quantity, voltage. This representation guarantees that Eq. 

7.4.1 is identically satisfied. Now, substitute Eq. 7.4.3 into 

Eq. 7.4.2 to get 

V - eVcj) = - Pq (7.4.4) 

where e and P are, in general, functions of spatial coordinates. 

Equation 7.4.4 is equivalent to Eqs. 7.4.1 and 7.4.2 taken together, 

but with the restriction that Eg is represented by the special form 

of Eq. 7.4.3. The goal is then to find two complementary variational 

integrals whose stationary equations are equivalent to Eq. 7.4.4 and 

imposed boundary conditions not yet specified. 

The first step is to invent suitable operators, T, T*, 0, a*, 

as discussed in Section 3.2, satisfying the equation 

(u,T(()) = [T*u,<}i] + (u,a(|))3v (7.4.5) 

where the boundary terra can also be written as: 

(u,a({i)3V = [ a^u.,<t)]9V (7.4.6) 
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To this end, consider the vector identity 

V • e u<t> = Eu • V(J) + (j)V • eu" (7.4.7) 

After integrating both sides of equality, it can be rewritten as: 

f(u*V(ti)edV = f— (V'eiDcJjedV +f (u-n^)edB (7.4.8) 
J  J e  J3V 

By changing the order of û" and n, the last term is also equal to 

f (u-ni|))edB "( (n'u)(|i€dB (7.4.9) 
J 3V -3V 

Comparing Eq. 7.4.8 with Eq. 7.4.5, we now identify the operators as 

T* = V(J) (7.4.10) 

T*u =-—V-eu (7.4.11) 
E 

acp = nij) (7.4.12) 

The adjoint operator o* can be identified as 

o*u = n*u (7.4.13) 

from Eqs. 7.4.6 and 7.4.9. Note that our scalar products contain a 

multiplying factor e. This is slightly different than any of the scalar 

products encountered in Chapter 3. In Eqs. 7.4.11 and 7.4.13, the left-

hand sides are written in a general notation that does not distinguish a 

vector function from a scalar function. This notation will be retained 

throughout the remaining discussions. 

Next step in the formulation is to identify the original problem 

Eq. 7.4.4 as belonging to a class of problems 

T*T(J) + Q* = f (7.4.14) 

Knowing what the operators T,T* for this problems look like, we see 

that the left hand side of Eq. 7.4.4 must match up with the term T*T^ 

in Eq. 7.4.14. This can be seen by rewriting Eq. 7.4.4 as 

- - V-eVd) = ̂  (7.4.15) 
E E 
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and comparing it with Eq. 7.4.14. Now it is clear that Eq. 7.4.15 

is a special case of Eq. 7.4.14 with 

Q = 0 (7.4.16) 

f = — (7.4.17) 
E 

Therefore, according to the theory developed in Chapter 4, the original 

problem Eq. 7.4.4, or equivalently Eq. 7.4.15, can be formulated as 

two complementary variational integrals. 

To make the original problem complete, we must impose boundary 

conditions. We will consider two such conditions. 

nij) = nijjg on 3V (7.4.18) 

or 

nc)) = nijig on 3V]^ (7.4.19) 

n'9(^ = n-ug on 9V^ (7.4.20) 

The first condition, Eq. 7.4.18, is the Dirichlet condition and 

Eqs. 7.4.19 and 7.4.20 together are called Dirichlet-Newmann conditions. 

It is felt that the above two conditions are quite general and include 

many problems of interest in electrical engineering. Consequently, 

the original equation (7.4.15) with one of the two boundary conditions 

will completely specify our problem. 

It is now easy to see that our problem belongs to the special class 

of boundary value problems discussed in Chapter 4. The remaining task 

is therefore is simply to apply the general results developed in that 

chapter. The results we need are the Eqs. 4.6.5 and 4.66 for Dirichlet 

problem and Eqs. 4.5.1 and 4.5.2 for Dirichlet-Newmann problem. For 
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convenience we will list the original boundary value problems together 

with their complementary variational equivalents. 

1. Dirichlet Problem 

a) Original problem 

4 V*eV(j) = ̂  in V (7.4.21) 
^ G 

ncj) = ncfig on 9V (7.4.22) 

b) Complementary variational counterparts 

J(<i>) = -VcJi-pQtjxiV (7.4.23) 

G(u) = ̂ -ijEu'udV + ̂ (7.4.24) 

2. Dirichlet-Newmann Problem 

a) Original problem 

— V'eV(jF = — • in V (7.4.25) 
e E 

n<|) = n <|IB on (7.4.26) 

n'V(|) = ^*ug on 8V2 (7.4,27) 

b) Complementary variational counterparts 

= J^eV(i)-V(l)-po(t)dV -^n-ug ({ledB (7.4.28) 

G(u) = îï'udV +f û'n'î'gEdB (7.4.29) 

^  d V i  
We have therefore succeeded in transforming the boundary value problem 

of zero-order electric field into a variational problems. 

7.5. Proof of Dual Extremum Principles 

Although the theory developed in Chapter 4 guarantees complementary 

extremum principles, it is reassuring to prove them directly. We will 
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prove "minimum" principle. Let us first write down the canonical form, 

discussed in Chapter 4, of the original problem: 

V(j, = Û in V (7.5.1) 

1 — P n 
— V- £ÏÏ = — (7.5.2) 
e ' e 

n(t> = "ncfig on 3V (7.5.3) 

Next, substitute (|)+ aÇ , where (j) is assumed to be an extremal, for ij) in 

Eq. 7.4.23. Each term in the integrand becomes 

^c(Ve+VaÇ) * (V(j)+VaÇ) = Vl)+eV())-VaÇ + ̂eVaÇ-VotÇ (7.5.4) 

and 

Pg ((j)+0!O = Pqi)> + (7.5.5) 

resulting in the equality 

j((ti+aÇ)= j^£V<j)'V(j)- PQ dV + a^EV(|)-VÇ- PgÇdV + 

a^JjjeVÇ-VÇdV (7.5.6) 

Through the use of vector identity 

V'(^£V4>) =VÇ-EV(j)+PV.eV<i) (7.5.7) 

the first variation can be written as 

61 = a^-ÇV-EV(J)- pqÇ dV + aJçeV(j)-ndB (7.5.8) 

If we pick trial functions from the class of functions satisfying the 

boundary condition as required by the theory, we get the relationship 

ntj) + naÇ = n(j)g (7.5.9) 

But, the function (|) by itself must certainly satisfy the boundary 

condition. Therefore, we obtain 

nÇ = 0 (7.5.10) 

The first variation now becomes 

6i = a J-Ç(V-eV(J)+po)dV (7.5.11) 
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For this integral to vanish for all arbitrary Ç, the fundamental theorem 

of calculus of variations guarantees that the factor 

V'eVij) 4- pQ = 0 (7.5.12) 

must be zero recovering the original differential equation. This proves 

what is sometimes referred to as the "stationary" principle. Because 

of the initial assumption that e is an extremal Eq. 7.5.6 becomes 

- J(*) = jijeVÇ.VÇdV (7.5.13) 

where e, the permittivity of region of fields, is always positive. 

The term VÇ-VÇ is square of the norm and therefore either larger than 

or equal to zero. This makes the total variation 

J ( (p+aÇ)  -  J(*)>0 (7.5.14) 

positive proving the minimum principle. 

Next we prove "maximum" principle. We follow similar steps as 

above and first write a trial function in the form iT + av where u" is 

assumed to be an extremal. The Eq. 7.4.24 then becomes 

G(uH-aV) = J-Hû*ïïedV + u'n'I'B^dB -a^u'vedV + 

af v'n(|)gGdB - ^ v-vsdV (7.5.15) 

•' 3V 
after some rearranging. Now suppose ïï satisfies 

Û = V(|) (7.5.16) 

where 0 is an extremal for the functional J ( < P ) .  Substituting this 

particular form for ïï, the first variation takes the form 

PI = - evdV + ot f vn*B edB 
J  J  3V  

= af(j)V-evdV - a f ev(j) •ndB+ctf vnijjBedB (7.5.17) 
• '  J  dV  •'3V 
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The last two terms cancel because at the boundary. We recall 

now that the trial function must satisfy Eq. 7.5.2. As a consequence, 

we obtain the relationship 

-V-eu "V "EGv = PQ (7.5.18) 

which gives 

V.ev = 0 (7.5.19) 

This last equation forces the first variation to vanish. Therefore, 

the functional G(u) is stationary at the exact solution of the original 

problem. Furthermore, the second variation in Eq. 7.5.15 is seen to 

be negative. Thus, we conclude 

G(û+av) - G(û)<0 (7.5.20) 

proving the maximum principle. 

Before leaving the Dirichlet problem, let us compare the exact 

stationary values of the two functionals. At the stationary point, 

Eq. 7.4.23 becomes 

J ( < p )  = J %eV(^ • "EVcfdv (7.5.21) 

because of Eqs. 7.4.21 and 7.5.1. The second term in the integral 

can be replaced by its identity resulting in the expression 

J(^) = (^u'u-Eu'udV + Ç eu(|)*ndB 
•' -"av 

= Eu'udV + f u" n^BEdB (7.5.22) 
J  Jav 

Therefore, at the stationary point the functional J(<1>) is identical 

to its complementary function G(u). 

The proof of Eqs. 7.4.28 and 7.4.29 are quite similar to what 

has been shown above. Consider Eq. 2.4.28. This equation is the same 
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as Eq. 7.4.23 we just proved except the additional boundary term has 

been added. Its total variation becomes 

J ( (p  +aÇ) - = a^eVcJ) -VÇ- pg Ç dV - a ̂  n-uSedB + 

dV (7.5.23) 

The first variation can be rewritten as 

51 = a( -ÇV-eV^i- p %dV + Ç eV<!) -ndB + a( geV# -ndB -
^ ^ d V i  ^ d V 2  

n-uBfedB 
'3V2 

= a (V-eV())+ po)dV + a J Çen"(V<i'-uB)dB (7.5.24) 
3^2 

through the use of vector identity, Eq. 7.5.7, and Eq. 7.5.10. Setting 

61=0 results in 

V*eV(j)+po = 0 in V 

n(j) = n<j)B on 9V]_ 

n-V(j) = n*uB on 3V2 

recovering the original boundary value problem. Since the second 

variation in Eq. 7.5.23 is positive, we obtain 

J((()+aÇ) - J((fi)>0 (7.5.25) 

proving the minimum principle. 

Next, we prove the maximum principle. Consider Eq. 7.4.29. Note 

that this equation is identical in form to that of Dirichlet problem. 

The only difference is that in Eq. 7.4.29, the boundary term is integrated 

over part of the whole boundary. The total variation looks like 

G(u +av) - G(U) = -a J u-vedV-fctJvncj)BdB - ct^j^vvedV (7.5.26) 

Now suppose u=V((). Then, by the same reasons explained for the Dirichlet 

case, the first variation becomes 
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SG = -aWii 'vEdV + ^ vn<l>BEdB 
; "avi 

= a\d>V*£vdV - a\ <|)v"-îredB - AvnedB + 
3Vi aV2 

a { ^«n^iBEdB 
^avi 

= f<fv -eTdV - J (|,v-nedB (7.5.27) 

aV2 

Recall that the theory in Chapter 4 requires trial functions to satisfy 

not only Eq. 7.5.2, but also 

n-(u+aV) = n*uB on 3V2 (7.5.28) 

yielding the result 

n*v =0 on 9V2 (7.5.29) 

Therefore, the boundary term in Eq. 7.5.27 must vanish while the previous 

result, Eq. 7.5.19, forces the first term to zero. This proves that the 

functional G(u) is stationary at the exact solution of the original 

boundary value problem. In Eq. 7.5.26, the second variation is seen to 

be negative. Therefore, the maximum principle 

G(u-otv) - G(u)£0 (7.5.30) 

also holds. 

As required by the general theory developed in Chapter 4, it has 

been demonstrated that the two functionals for Dirichlet problem assume 

the same value at their stationary points. We should be able to show 

the same results for Dirichlet-Newmann problem. By use of the vector 

identity, Eq. 7.5.7, it is easy to see that the functional J(<J') is 

equivalent to: 
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J(<i>) = i%eV(j) •V(ti-V(t) •eV(j)dV + \ (j)eV<ji*ndB + 
J •'avi 

( àeVé'ndB - i n-uB(j)edB 
''aV2 '9V2 

uTi(j)BedB 

G(u) (7.5.31) 

confirming what is predicted by the general theory. 

7.6. Formulation of and Hg 

The kth-order electric fields for kM are divergence-free under 

our assumption k=0 for kH, The kth-order magnetic fields are also 

divergence-free for all orders of k. Therefore, we should be able 

to represent them as a curl of some vector field. 

Before discussing the variational formulations, let us first write 

down the field laws under consideration: 

(7.6.1) 

k>l 

V'EEk = 0 (7.6.2) 

for electric fields; 

VXHq = JQ (7.6.3) 

V'uHQ - 0 (7.6.4) 
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for zero-order magnetic field; and 

__ _ aâ,.! 
Vx% = ^— (7.6.5) 

k>0 

=0 (7.6.6) 

for kth-order magnetic fields. These field laws are particular instances 

of the equation 

VxA = F (7.6.7) 

V*aA = 0 (7.6.8) 

By interpreting A, a, and F differently, the above three relationships 

can be recovered. Therefore, in the following we will consider the 

general case of Eqs. 7.6.7 and 7.6.8. 

The first step is to represent the quantity aA as a curl of a 

vector field <j) by defining 

aA = VX(j) (7.6.9) 

Next, substitute this equation into Eq. 7.6.7, obtaining 

Vx — Vxé ~ F (7.6.10) 

Now, we need to identify Eq. 7.6.10 as belonging to the class of problems 

T*T<1)+Q(j) = f (7.6.11) 

If we can show this, then the general results presented in Chapter 4 

will immediately yield the desired variational formulations. 

To this end, consider the vector identity 

V»-LliX(() = (J)*Vxi.u-iu»Vx0 (7.6.12) 
a a a 

We can rewrite this as 

\u.Vx(f)idV = (ayxlu.j; IdV + ( u'nxA 1. dB 
•' a J a a J9V a 9V 

(7.6.13) 
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after integrating both sides of the equality. The boundary term in 

Eq. 7.6.13 is also equal to 

( u-nxd) — dB = \ -nxu'é — dB (7.6.14) 
JgV a • . ""gv a 

By the same reasoning given in Section 7.5, the last two relationships 

enable us to define appropriate operators for the problem under con­

sideration. These operators are 

T* = Vx* (7.6.15) 

in V 

T*u = aVx i Û (7.6.16) 
a  

aij) = nx(j) (7 .6.17) 

on 3V 

a*u = -nxu (7.6.18) 

It is now clear that if we multiply both sides of the equality 

by the quantity a, Eq. 7.6.10 becomes a special case of the class of 

problems defined by Eq. 7.6.11. The quantities Q and f in Eq. 7.6.11 

are seen to be 

Q = 0 (7.6.19) 

f = aF (7.6.20) 

It is interesting to note that Eq. 7.6.10 and Eq. 7.4.15 both belong 

to the same subclass of Eq. 7.6.11, in that both Q=0 and frO are true. 

To specify the problem completely, we must impose a boundary 

condition. The general theory allows Dirichlet, Newmann, and mixed 

conditions. But, we will consider only the Dirichlet condition. 

Therefore, our complete problem becomes 

aVx — Vxd) = aF in V (7.6.21) 
a 
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ïïxij) = nxcjig on 9V (7.6.22) 

In many electromagnetic problems, the boundary conditions are specified 

in terms of the tangential components of the field. Eq. 7.6.9 then 

allows us to determine nx(j)g. 

Once we have determined that our problem falls under the special 

class discussed in Chapter 4, the remaining task is to invoke the general 

results. Therefore, using Eqs. 4.6.5 and 4.6.6, we can immediately 

write down the desired formulations 

= ( H i. Vx(j)*VX(j)-F*i^dV (7.6.23) 
a 

and 

G(u) = f -^iT'u 1. dV+ \ i. dB (7.6.24) 
J a a 

where J(T) and G(u) yield upper and lower bounds, respectively. 

. For convenience, let us specialize Eqs. 7.6.23 and 7.6.24 to the 

original field problems and list the results for later reference. 

These results are: 

JC^) = Ç ̂  i Vx(i>*VX(J)-Jo*(j)dV (7.6.25) 
^ U _ _ _ 

G(u) + \ -%u'u 1. dV+ ( u-nxAg idB (7.6.26) 
u • Jav U 

for HQ, and 

— 3 B 
j(<i') = ^ ̂  i. Vx^'yx^ + (7.6.27) 

G(u) = f-î^û-îr i dV + f Û'ÏÏxTb — dB (7.6.28) 
J  e  J g v  e  

for E^, and _ 
_ _ _ _ _ _ 3D _ 

J(cj)) = l.Vx(j)*Vx(l)-(Jjj+— )-(j)dV (7.6.29) 
J p dt 

G(u) = (-^u*u Jl dV + ( u-nxdjB A dB (7.6.30) 
V J 3V U 

for Equations 7.6.26 and 7.6.30 are seen to be the same, but they 

are listed with their corresponding J(0) for completeness. 
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7.7. Proof of the Validity of J((j)) and G(u) 

The general theory of Chapter 4 guarantees the validity of dual 

extremum principles for J( *) and G(u). In the following, we shall 

prove them directly. Let us first write down the canonical equations 

= u" (7.7.1) 

avx2.ir=aF (7.7.2) 
a 

for the original problem, Eqs. 7.6.21 and 7.6.22. Consider 

Eq. 7.6.23. By the same technique employed in the static case, we 

substitute Vxf+VxaÇ for (jj. Expanding each term and collecting proper 

terms together, we obtain 

J('M-ag) = i-Vxcj)-Vxijj-F .({jdV + yxcfi«ÇdV 
J a J a 

+ % 1 Vxl'.VxçdV (7.7.3) 
^ a 

Through the use of a vector identity 

i ̂ x̂̂  = Ç=Vx •ivx(|)- ivx(|)»̂ xç (7.7.4) 

the first variation takes on a different form 

61 = c(îç*(Vx lsx(()-F)dV +a ( .ivxcjj'nxgdB (7.7.5) 
•' a Java 

But, we recall that the trial functions must satisfy the boundary condi­

tion. This restriction yields the relationship 

nx((j)+aÇ) = nxijig on 3V (7.7.6) 

which implies 

nxÇ =0 on 3V (7.7.7) 

Therefore, only the first term in Eq. 7.7.5 survives. Finally, setting 

the first variation equal to zero, we obtain the stationary equation 
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yx i VX(j)-F = 0 (7.7.8) 
a 

which is precisely what we wanted to show. Also, the second variation 

in Eq. 7.7.3 is always positive, establishing the "minimum" principle 

J((j)+a^-J(^>^0 (7.7.9) 

Next, we prove the "maximum" principle. By substituting u+av 

for u in Eq. 7.6.24, we obtain 

G(u+Civ) = (-^u-uidV + ( u'1. dB 
J J gV ^ 

+ a\-u*v 1. dV+ at vnxcjiTj A dB 
J a "a 

- 1. dV (7.7.10) 
a 

Suppose the stationary function u satisfies Eq. 7.7.1. The first 

variation then becomes 

ÔG = a5-7x<j).v i dV + a \ v-nxi^jg Jl dB 
a aV a 

= a (-d) "Vx — vdV ( v«nx()) — dB 
J a Jgv a 

+ af v^nxAiJ A dB (7.7.11) 
Jav a 

in which the last term was obtained through the vector identity, 

Eq. 7.7.4. In Eq. 7.7.11, the boundary terms cancel because 

nx^ = ïïx^B on 3V (7.7.12) 

We also recall that the general theory requires the trial functions 

to satisfy the second of the canonical relationships, Eq. 7.7.2. This 

leads to 

Vx i V = 0 (7.7.13) 
a 
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Therefore, the first term in Eq. 7.7.11 also vanishes, making the 

functional G(u) stationary at the solution of the original boundary 

value problem, Eqs. 7.6.21 and 7.6.22. The "maximum" principle 

G(û-hïv) - G(û)<0 (7.7. 

holds because the second variation in Eq. 7.7.10 is always negative. 
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8. SIMPLE APPLICATIONS 

8.1. Introduction 

In the previous chapter, we derived complementary variational 

integrals for Maxwell's equations in power series form. We have also 

proved the validity of each integral directly. These variational 

integrals are equivalent to the k-th order field equations in point 

form. As such, they must be applicable to any sinusoidally-varying 

electromagnetic field problems. 

In this chapter, we will apply our formulations to a simple analysis 

of a parallel-plate capacitor. We will derive variational approximations 

to the D.C. capacitance of the structure and compare them with the 

exact value. Also, the effect of the magnetic field (produced by the 

changing electric field) on capacitance will be estimated by keeping 

the first three terms in the power series solution. 

8.2. Definition of the Problem 

Figure 8.2.1 shows a parallel-plate capacitor with dimensions 

and coordinate system as indicated. We assume that the capacitor has 

an air dielectric between the plates and is excited by the distributed 

sinusoidal source, Vg, at z = -£. Solution is sought under the non-

fringing assumption. This problem is described by Magid in Ref. 33. 
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2, 

V s 

y  

Figure 8.2.1. Parallel-plate capacitor 
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For the purpose of comparing different solutions at different 

frequencies, we must fix one reference quantity at a chosen reference 

point [33]. In order to make the problem precisely the same as that 

described by Magid, we will choose the reference point at z=0 and fix 

the voltage at this point 

with the constant magnitude A. We shall refer to it as the "reference 

voltage." This means that at each frequency, the amplitude of the 

source must be adjusted until the magnitude of the voltage reads A at 

z=0. This reference requirement enables us to compare the relative 

size of each kth-order field. Our problem is to estimate D.C. and 

frequency-dependent capacitances of the system using complementary 

variational techniques, and to compare the results with exact solutions. 

Before we proceed with the variational formulations, let us write 

down the exact solutions. Our main purpose in this chapter is to illus­

trate the variational methods--not the mathematical techniques leading 

to the exact solutions. In fact, we shall skip the entire mathematical 

details and simply list the final results for later reference. For our 

purpose, it is sufficient to know the first three terms in the power 

series. These fields are 

Vg = Aj-coswt ( 8 . 2 . 1 )  

8.3. Exact Solutions 

Eg = -ix A/d cosut 

HQ = 0 

(8.3.1) 

(8.3.2) 
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El = 0 (8.3.3) 

_ _ e„a)A 
Hi = - iy  " j  z sinwt (8.3.4) 

= îx " z' cosiDt (8.3.5) 
^ ^ Zd 

H2 = 0 (8.3.6) 

in which uq and eg ^re the permittivity and permeability of free space. 

Magid's book [33] discusses the mathematical details in obtaining these 

exact solutions. 

Notice that the odd-term electric field is zero, while it is the 

two even terms that vanish for the magnetic field. This situation 

continues to hold true for all orders of k. Therefore, for both Ej^ and 

the nonzero terms appear in an alternating fashion. This trend 

is typical of the power series approach [33]. 

8.4. D.C. Capacitance 

In general, the D.C. capacitance of a two-conductor structure 

can be defined in terms of stored electric energy by the equation 

'̂ D.C. ~ 2/Â  Wj. (8.4.1) 

The quantity A stands for applied D.C. voltage and wg stands for energy 

stored in the electric field. For the parallel plates in our problem, 

this D.C. capacitance can be calculated to be 

CD.C. = ^0 (8.4.2) 
a 

showing that it is independent of the applied voltage. Therefore, 

we should be able to apply an arbitrary D.C. voltage A without violating 

the equality in Eq. 8.4.1. 
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Let us now consider exact zero-order electric field solutions for 

this parallel-plate capacitor. We see from Eq. 8.3.1 that the only 

difference between static and zero-order fields is that the zero-order 

field vibrates sinusoidally at frequency u. However, even though the 

zero-order field is vibrating, it is not capable of producing a magnetic 

field. This is evident from the zero-order electric field equations. 

Therefore, at each fixed time, the zero-order electric field is equivalent 

to the static electric field. (There is no magnetic field associated with 

a static field.) It is clear then that Eq. 8.4.1 should remain valid 

when static voltage A is replaced by the zero-order reference voltage, 

Acoswt, oscillating at an arbitrary frequency. In our problem, the 

source and reference voltages are the same because Eg is independent 

of the coordinates y and z. 

8.5. Zero-order Variational Formulation of D.C. Capacitance 

The governing laws for the zero-order electric field are 

where the zero-order charge density is zero for our system. The problem 

is therefore a special case of the more general situation discussed 

V X Eg = 0 (8.5.1) 

V-EqEQ = 0 (8.5.2) 

in Section 7.4. By representing Eg as a gradient field 

Eg = - (8.5.3) 

we obtain the governing equation for <p 

V • Eg Vi}) = 0 (8.5.4) 
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nij) = n<|)B (8.5.5) 

where a boundary condition has been added for convenience. The first 

step in complementary variational formulation of Eqs. 8.5.4 and 8.5.5 

is to write them as coupled canonical equations 

V(j) = u (8.5.6) 

in V 

- — V.eQÛ=0 (8.5.7) 
GO ^ 

n (j) = irifg on 3V (8.5.8) 

We could have formulated the problem as the Dirichlet-Newmann-type 

problem. Our choice of the Dirichlet condition has no particular reason. 

The general results of Section 7.4 immediately yield the desired 

variational formulation. These integrals are 

J(<fi) = E oV({)'9t{)dV (8.5.9) 

G( u) = J - îj u "udV + ^ ̂ u" n^ gGgdB (8.5 .10) 

One immediately realizes that the integrand in Eq. 8.5.9 is the usual 

definition of electric energy density. We will interpret it as the 

"zero-order electric energy." Therefore, in view of the equality of 

both Eqs. 8.5.9 and 8.5.10 at their stationary point, we conclude that 

J($) and G(u) represent the exact energy at the stationary point. 

Equation 8.4.1 then says that we can write D.C. capacitance 

Cg Q = f ̂  E Q V({) « V<WV (8.5.11) 
A^cos^wt 

Cd.C. = A^cos^ t J - Hu-udV + Jg^u-n(|)BeodB (8.5.12) 

which are the desired complementary variational formulations of the 

DC capacitance. 
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8.6. Approximate Calculation of D.C. Capacitance 

The exact solutions for our problem can be determined to be 

X COSWT ( 8 . 6 . 1 )  

EO = - ix Ij) coswt cosut ( 8 . 6 . 2 )  

under the Dirichlet boundary conditions 

0 at x=0 

<i)B " A cosi^t at x=d 

(A/d) X coswt at y=0,w 

z=0,-S. 

For the purpose of illustrating the variational formulations, Eqs. 

8.5.11 and 8.5.12, we shall perturb the exact solution slightly and 

evaluate approximate capacitances. 

First, let us evaluate Eq. 8.5.11 through the use of a trial 

function 

This particular choice of the second term is consistent with the 

requirement that the trial function must satisfy the Dirichlet boundary 

condition. The functional j(tj)+aÇ) is calculated to be 

(J) + aÇ = A/d X coswt + ax(x-d)y(y-w)z( z+2)coswt (8.6.3) 

J((f)+aÇ) 

+  a^E Q  ̂  ̂  j  (2x-d ) y ( y - w ) z ( z + & ) c o s ^ w t  d V  

+ j [(2x-d)^y^(y-w)^z^(z+2)^ 
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+ x^(x-d)^(2y-w)^z^(z+'i)' 

+ x^(x-d)^y^(y-w)^2z+£)^]cos^tot dV (8.6.4) 

in which the first variation becomes 
,3  ,„ ,2  ; A\ , , y wy w 2 I z  0 

ÔJ = ACG (^\[X'-DX]D [Y" 5 ] COS^WT 
\ d /  0  ^  0  ^  ^  - g .  

(8.6.5) 
= 0 

This is in agreement with the general theory since the first term of 

our trial function is the exact solution. After performing the 

integration, Eq. 8.6.4 takes the form 

j((j)+aÇ) = w&dcos^wt 

+ ̂  (8.6.6) 
\ 2700 / 

which results in the approximate capacitance expression 

^'D-C. - A'cos'ut 

= Eg +E Q('̂ /A) Ŵ Î-D (8.6.7) 

The quantity in Eq. 8.6.7 represents the bracketed factor in the 

second term of Eq. 8.6.6. 

Notice that Eq. 8.6.7 is an equation of a parabola in the variable 

a. At a=0, it assumes the exact D.C. capacitance value, the first term 

of the equation, as predicted by the theory. When , Eq. 8.6.7 is 

always larger than its exact stationary value, exhibiting the "maximum" 

principle. The error term in Eq. 8.6.7 is seen to be directly pro­

portional to the square of the ratio û/A. This certainly agrees with 
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what one would expect: the larger the ratio a/A, the farther away 

the trial function is from the exact solution. 

Next, we will evaluate Eq. 8.5.12. To do this, let us first 

calculate the functional G(u+av). We choose our trial function to 

be 

u + av = ijj A/d cosut + i^ay cosut (8.6.8) 

where the first term is the exact stationary function. This particular 

choice of trial function satisfies the required condition, Eq. 8.5.7. 

After some calculation, both terms in the functional become 

J" % EQ (u+av) • (u+ v) dV = ^ EQ (A/d)^ w&d cos^oit 

- aeo A(w^/2)£cos^(Dt - % eg d (w^/3)£cos^ut (8.6.9) 

and 

5 iT-n^g EQ dB = (A^/d) EQW&cos^wt + otA eq (w^/2)&cos^wt 

( 8 . 6 . 1 0 )  

The only contribution to the surface integral, Eq. 8.6.10, comes from 

the upper plate. Notice that the terms containing a, in both equations, 

are negatives of each other resulting in cancellation when we add. 

Again, this vanishing of the first variation is what we expect because 

our trial function is built by slightly perturbing the exact solution. 

The desired functional then becomes 
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G(u+av) = heo (A^/d) w&cos^wt - heQd (w^/3)jlcos^u)t 

( 8 . 6 . 1 1 )  

leading to the second approximate capacitance expression 

2 

A'cos^wt 

eg  (wH/d)  - (a/A)^  eq^ (w ^Z / 3 )  ( 8 . 6 . 1 2 )  

This equation is the same as Eq. 8.6.7 except for the negative multiplying 

factor in the second term. Therefore, the comments given for Eq. 8.6.6 

are applicable except that the stationary value of Eq. 8.6.12 is larger 

than that of any other approximate D.C. capacitance value C"Q g . In 

other words, Eq. 8.6.12 exhibits "maximum" principle as expected. 

Figure 8.6.1 is a plot of two approximate capacitances C'g 

and . The figure shows that the relationship 

is always true as predicted by the general theory. We can always take 

the average of C'j) and C"g_as the best approximation. 

This section illustrated how the zero-order electric field can 

be used to obtain an approximate D.C. capacitance of the parallel-plate 

capacitor. The important step was to justify the validity of D.C. 

capacitance expression, Eq. 8.4.1, when a D.C. voltage was replaced 

by the zero-order reference voltage, Acosujt. Also, the two functionals, 

J((j)) and G(u), were recognized as the zero-order energy of the system. 

Since the complementary variational formulation is valid in general, 

the above techniques must also apply to any arbitrary capacitance 

configuration. 

c'd.c. 1 c'd.c. (8.6.13) 
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D.C 

•D.C 

Figure 8.6.1. Variational approximation of the D.C. capacitance 
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We must remember that the parallel-plate capacitor is a very special 

case. Normally, in a practical problem, a person will not be able to 

construct the trial function in the form of Eq. 8.6.3 or Eq. 8.6.8 

because the exact solution is not known in advance. Usually, in practice, 

one builds a trial function laden with many parameters. These parameters 

are then adjusted until each functional assumes its minimum or maximum 

value. 

8.7. Complementary Variational Formulation of E2 

Referring back to Fig. 8.2.1, our problem in this section is to 

formulate the second-order electric field between two parallel plates 

as complementary variational integrals. The governing equations are 

St^oiii 
VxEo = - (8.7.1) 

9t 

V'EQE2 ~ 0 (8.7.2) 

By defining 

EQE2 = Vx(j) (8.7.3) 

we obtain the differential equation 

Vvtfi = - —0—1 in V (8.7.4) 
CQ 3t 

îTx'^ =trx'^g on 3V (8.7.5) 

for vector potential field ifi. The boundary condition, Eq. 8.7.5, is 

listed for convenience. The corresponding canonical equations are 

Vxc{) = u _ (8.7.6) 

awnH 
Vxu = -En (8.7.7) 

" 9t 
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nx<Ji = nx<j)B (8.7.8) 

leading to the complementary variational formulation 

4 L-Vx(i)-Vx(}> + dV (8.7.9) 
Eg 3t 

G(u) = (-i5ÏÏ.ïïL.dV + I ÏÏ.ÏÏXXB i_dB (8.7.10) 
J Eg JaV CO 

8.8. Evaluation of J(<|)) and G(u) 

For the purpose of illustrating the basic structure of the 

functional s, J((p) and GCîT) , let us evaluate them at the trial functions 

which are slightly different from the exact solutions. Our specific 

choice of these trial functions are 

= -iyl gz^coswt + i^x(x-d)y(y-w)z(z+&)coswt (8.8.1) 

and 

û+ov = i^^z^coswt + iyCxy (8.8.2) 

where 

(8.8.3) 

The first terms in both equations, which are the exact <() and u, were 

determined from the relationships û=EQE2 and Vx4'=u where E2 is known. 

Let us evaluate J(<t>). The first term becomes 

^5 jL_Vx(j)«Vk<j) - + ("T^) (8.8.4) 
Efi \ 3z / \ dx / 

After some algebraic manipulations, each term in Eq. 8.8.4 becomes 
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- -7^—0'3x(x-d)y(y-w)(2z^+Jlz^)cosut 
^0 

+ (y-w) ̂(2z+^) ̂cos^ut 

= a^fi + of2 ^3 (8.8.5) 

and 

1 / 2 1 
I —^1 = a^(2x-d)^y^(y-2)^z^(z+£)^cos^a)t 

2^0 \ " 0 \ -/ 

= a^fi^ (8.8.6) 

The last term of the integrand is calculated to be 

——— "4i = T—B^z'^cos^wt - — aGx(x-d)y(y-w)(z^+&z^)cos^wt 
8t 0^0 ^0 

= af5+f6 (8.8.7) 

Now, we can write down the total variations as 

J(<j,+0!C) = jfg+f^dVKijfg+f^dV+c^-j fi+f^dV (8.8.8) 

in which the integrations should be performed over the entire volume 

between the two parallel plates in Fig. 8.2.1. The first variation 
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" = -It •] [fl B-] 

1 r-dMr-wn r-^ 

12 

COS ut 

COS ait 

= 0 (8.8.9) 

as predicted by the general theory. Each term in the second variation 

integrates to be 

j fldV = 
1 

2ef 30 
( 8 . 8 . 1 0 )  

( 8 . 8 . 1 1 )  

while the exact stationary value becomes 

[fg+f^dV = . —^^wd r—1 cos^wt 
J  Co L  5  J  

( 8 . 8 . 1 2 )  

The pair of Eqs. 8.8.10 and 8.8.11 say that the second variation is a 

positive constant. Therefore, we can write 

J(c()-hïÇ) — 6^wd 
24 Eg .  5 .  

cos OJ t+o^gg (8.8.13) 

in which $2 represents the sum of Eqs. 8.8.10 and 8.8.11. The result 

of Eq. 8.8.13 is plotted as part of Fig. 8.8.1 and is commented on at 

the end of this section. 

Next, we calculate G(u;. Somewhat tedious but straightforward 

algebraic calculations show 
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u+cîT) * (u+^^dV = -= —3^wd [— ] cos 
® En 5 

"a^ h (8.8.14) 
0 ^ 

and 

\ (u+av).nx<))BJ^B =:^—B"wd[-%^]cos"wt (8.8.15) 
.'3V EQ 12 Eg ^ 

The only contribution to the surface integral of the last equation 

comes from the integration over the surface at z = - l .  The total variation 

becomes 

G(u+av) —^^wd[-^]cos^a)t-a^'^—— dfc[-^] (8.8.16) 
Eg 5 Eg ^ 

whose first term agrees with that of J((j)+aO. Equation 8.8.16 is also 

plotted in Fig. 8.8.1. 

Some comments are now in order. As predicted by the general theory, 

Fig. 8.8.1 clear!j.y shows the complementary nature of both functionals 

J((ji+aÇ) and G(u+av). At ci=0, the trial functions become exact and 

both J(<|)-KxÇ) and G(u+av) assume the same value. When O't'O, J((j)+<*C) 

is always larger, while G(u+av) is always smaller than the exact 

functional value. 

In most practical applications, however, the exact solutions are 

not known and it is highly improbable that one can choose the same 
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G(u+av) 

Figure 8.8.1. Complementary variational functionals j and G 
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form of trial functions as ours. In such situations, the two functionals 

never assume the same value. One such possible contour is also drawn 

in Fig. 8.8.1. 

8.9. A.C. Capacitance Calculation 

The A.C. capacitance is defined through the equation 

dVg 
is = CA.C. (8.9.1) 

where ig and Vg are the time-domain current and voltage, respectively. 

This capacitance is frequency-dependent because of the existence of 

magnetic field produced by the changing electric field. 

In order to determine the nature of the frequency dependence through 

a power series approach, one needs to keep calculating higher order 

fields until the frequency variable oi enters into the amplitude of 

the field. Then, one should be able to calculate the frequency-dependent 

terminal voltage and current. Subsequent calculation of impedance 

should allow one to identify the equation for the capacitor. 

Let us use our trial function to calculate the A.C. capacitance 

for the parallel-plate capacitor. The results should suggest how our 

variational techniques can be applied to similar problems. First, 

we shall calculate the second-order electric field. We are free to 

use either ((H-aÇ or u+av, but we will arbitrarily choose The 

approximate E2 becomes 
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Eo =7r- VX-ip 

- / 1 \ 
= ix ̂ -2^z^cos<j)t-ax(x-d)y(y-w)(2z+Jl)cos(jotj 

+ ig a (2x-d)y(y-w)z(z+Jl)cosa)t (8.9.2) 

The total electric field E is 

1 = io + El + Ë2 (8,9.3) 

where Eg and are given as Eqs. 8.3.1 and 8.3.3, respectively. We 

need to evaluate this total electric field at z=-& in order to 

calculate the source voltage. Only the x-component of E contributes 

to the source voltage. This x-component is 

Ix . (Eo+Ëi+E2)| = [(- f 

+ a"~ x(x-d)y(y-w) Jllcosujt (8.9.4) 
^0 

which gives the source voltage 

•d 

Vs = - j  E«a^dx 

0 

= [A(l-)2)j[QEow^ &^) + ct _i_ d^y(y-w) Jl]cosojt (8.9.5) 
6eo 

where the second term is seen to be a function of coordinate y. This 

is not consistent with our nonfringing assumption where E and H cannot 

vary with y [33]. This implies that the source voltage must also be 

a function of y. However, we are using a perturbed E field, and, 

therefore, cannot expect to obtain the correct result. Only when a goes 

to zero does Eq. 8.9.5 yield the correct result given by Magid [33]. 

Next, we need to calculate the terminal current i g .  To this end, 

we need the magnetic field 
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H = HO+H]^+H2 

_ EQUA 
=  - i y  zsintot. (8.9.6) 

^ d 

where Hg and H2 are zero. The terminal current then becomes 

w 

is = J i zdy 

= -( —g—) £u Asinwt (8.9.7) 

By transforming Eqs. 8.9.5 and 8.9.7 to phasors, the impedance 

is calculated to be 

V 
s 
I = 
s C„ „ • / 

( 

6.eo 
allowing us to identify the A.C. capacitance as 

D.C- -.J B.C. \ 
^ (l-^WQEQ&^w^) \ ^d^y(y-w)A ) (8.9.8) 

S. C .  

" (8.9.9) 

We evaluated the a-term (error term) in the denominator at y=w/2. 

This corresponds to the largest error term. 

The above calculations suggest how one might proceed in a practical 

problem. When the exciting source is electric in nature, such as the 

voltage source in the parallel-plate capacitor, the zero-order magnetic 

field is always zero [33]. The vanishing zero-order magnetic field 

results in a vanishing first-order electric field which, in turn, forces 
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the second-order magnetic field to be zero. This process continues, 

resulting in alternating zero and nonzero kth-order terms. 

Therefore, one can always choose the trial functions of the form 

E = eo+ûi)^e2+u)'*e4+* • • (8.9.10) 

H = hi+w3h2+w5hg+... (8.9.11) 

in which coefficients of may contain many parameters to be adjusted. 

Several numerical techniques, mentioned in Chapter 1, can be employed 

to optimize these parameters. After determining approximate E and 

H fields, one can then use them to calculate the source voltage and 

current. Since are constants, they must be somehow imbedded in 

voltage and current expressions. As a result, when the impedance is 

calculated, the factor must show up in the capacitance portion 

of the impedance. Therefore, one is able to determine the functional 

form of the frequency dependence of A.C. capacitance. 

The fact that the error term does not contain the frequency factor 

0)^, in our result for the approximate A.C. capacitance, originates 

from the trial function (jj+aÇ. Equation 8.8.1 shows that the error 

term aÇ in our trial function is in the form of a zero-order field. 

There is certainly nothing wrong with this choice. But, we paid a 

price for it, in the sense that the error term in A.C. capacitance 

expression did not contain a frequency factor. If we had chosen a 

trial function of the form (ji+aoï^Ç, where the frequency factor has 

explicitly been entered, we would have obtained a slightly different 

result, 
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CA.C. = 

(8.9.12) 

8.10. Practical Applications 

There are many problems in electrical engineering where the 

configuration of fields is similar to static fields [33]. Even in 

the microwave frequency range, some problems can be regarded as 

almost-static [3,33]. In addition, present microwave integrated 

circuit technology has extended the almost-static problems well into 

the microwave frequency range. The microscopic size of some high-frequency 

circuits makes even the conventional circuit theory valid at tens of 

giga-Hertz and even more. The technology of miniaturizing circuit 

components will certainly continue to advance, as evidenced by the 

booming microelectronics area. It is therefore foreseeable that in 

many microwave engineering problems, the almost-static analysis will 

yield sufficient accuracy for engineering purposes. 

Although the power series approach to electromagnetics is valid 

in general, it is most suitable for analysis of almost-static 

problems [33]. The advantages are obvious. First, the useful results 

can be obtained by keeping only the first few terms in the series. 

Second, because of the alternating zero and nonzero fields (the typical 

feature of the power series approach), one needs to perform the actual 

calculation only for the nonzero fields [33]. Vanishing kth-order 
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terms are known in advance. Furthermore, as pointed out in Chapter 6, 

the zero-order problem is a static problem. Magid also points out 

that each kth-order field becomes static-like and could be solved with 

no more effort than that needed in a static problem. 

We found in Chapter 7 that each kth-order field equation can be 

formulated as a complementary variation problem. Therefore, we come 

to the conclusion that many useful problems in engineering electromag­

netics can now be posed as two variational integrals yielding upper 

and lower bounds to the stationary value. This new variational 

formulation can be more advantageous in certain problems than the 

conventional variational formulation yielding just a one-sided bound. 

Existing numerical techniques, such as finite element methods, can 

be employed to reduce the two integrals into discrete algebraic problems. 

The advantage of such numerical procedures based on our new variational 

functionals are yet to be studied. 
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9. CONCLUSIONS 

Maxwell's equations in power series form have been formulated as 

complementary variational integrals. It has been found that each kth-

order static-like fields can be formulated as two variational integrals. 

One of these integrals yields an upper bound to the stationary value 

while the other integral closes in from below. The general theory 

guarantees that the exact stationary value is always between the two 

integral values. 

An illustrative example of a parallel-plate capacitor is discussed. 

It is shown that the zero-order trial field could be used to estimate 

the D.C. capacitance. Recognizing that the two variational functionals 

are "zero-order electric eneriesthe D.C. capacitance was formulated 

as a quantity proportional to the functional value. Also, some general 

procedures were suggested whereby one can use the higher-order fields 

to estimate the frequency dependence of the capacitance. 

The applicability of the dual extremum principles appears to include 

many problems of interest in electrical engineering. The continuing 

trend of miniaturizing circuit components allows circuit theory to 

be applied at tens of giga-Hertz and even more because of the small 

dimensions of the circuit compared to the wavelength. This seems to 

imply that in many microwave problems, useful information can be obtained 

by regarding the problems as almost static. These problems can then be 

recast as two variational integrals yielding both upper and lower bounds. 

Finally, it seems possible that numerical techniques, such as finite 
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element methods, can be developed based on the two complementary 

functionals ; this could lead to significant advantages over the existing 

methods of analyzing microwave problems. 
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